schrodinger.application.matsci.shapes module¶
Classes and functions to handle various shapes.
Copyright Schrodinger, LLC. All rights reserved.
- class schrodinger.application.matsci.shapes.Vertex(index, coordinates)¶
Bases:
object
Class to manage vertices.
- __init__(index, coordinates)¶
Create a vertex instance.
- Parameters
index (int) – the index of this vertex
coordinates (numpy.array) – the coordinates of this vertex
- class schrodinger.application.matsci.shapes.Edge(index, vertex_1, vertex_2)¶
Bases:
object
Class to manage edges.
- __init__(index, vertex_1, vertex_2)¶
Create an edge instance.
- getLength()¶
Return the edge length.
- Return type
float
- Returns
the edge length in Ang.
- class schrodinger.application.matsci.shapes.Face(index, indices, points, num_unique)¶
Bases:
object
Class to manage faces.
- __init__(index, indices, points, num_unique)¶
Create a face instance.
- Parameters
index (int) – the index of this face
indices (list) – the indices of points making up this face
points (list of numpy.array) – the points making up this face
num_unique (int) – the number of symmetry unique edges per face
- getEdges()¶
Return a list of Edge.
- Return type
list
- Returns
contains all Edge for this face
- setNormal()¶
Set the normal to this face.
- setArea()¶
Set the area of this face.
- getReferenceEdges(edges, num_unique)¶
Return a list containing the num_unique number of unique edges. These will be the reference edges used to orient the reference face of the polyhedron.
- Parameters
edges (list) – all Edge objects for this face
num_unique (int) – the number of symmetry unique edges per face
- Return type
list
- Returns
unique Edge objects to serve as references
- intersectSegmentAndPlane(line_start, line_end, inf_nan_thresh=1e-12, distance_thresh=0.0001)¶
Return the intersection point of the specified line segment and the plane in which this face resides or return None if there is no intersection.
- Parameters
line_start (numpy.array) – the starting point of the line segment
line_end (numpy.array) – the ending point of the line segment
inf_nan_thresh (float) – this parameter handles numerical precision for inf and nan cases
distance_thresh (float) – this parameter controls how the intersection of line segment end-points and a plane are handled for cases where one of the end-points lies in (or near) the plane (see the comment near the module level constant DISTANCE_THRESH)
- Return type
numpy.array or None
- Returns
the single point of intersection along the line segment or None if there is no intersection
- insideFace(point)¶
Return true if the query point lies on or inside the boundaries of this face, false otherwise.
- Parameters
point (numpy.array) – a query point
- Return type
bool
- Returns
true if the query point lies on or inside the face boundaries, false otherwise
- class schrodinger.application.matsci.shapes.ConvexPolyhedron(params, center, ref_face_idx, ref_face_normal_along, ref_edge_idx, ref_edge_along)¶
Bases:
object
Class to manage a convex polyhedron.
- __init__(params, center, ref_face_idx, ref_face_normal_along, ref_edge_idx, ref_edge_along)¶
Create an instance.
- Parameters
params (list) – list of floating point parameters defining the polyhedron
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- updateShape(vertices)¶
Update the shape object using the provided vertices.
- Parameters
vertices (list) – list of Vertex with new coordinates
- getVertices(vertices, scale=1.0)¶
Create vertex data for the polyhedron, including an option to scale all vertices using a multiplicative factor.
- Parameters
vertices (list) – list of numpy.array triples specifying the vertices of this polyhedron
scale (float) – multiplicative factor used to scale all vertices
- Return type
list
- Returns
a list of scaled Vertex
- getFaces(vertices, all_indices, num_unique)¶
Create face data for the polyhedron.
- Parameters
vertices (list) – list of scaled Vertex
all_indices (list) – contains sub-lists specifying the vertex indices for each face
num_unique (int) – the number of symmetry unique edges per face
- Return type
list
- Returns
a list of Face
- translateVertices(vertices, vector)¶
Translate the vertices by adding the specified vector.
- Parameters
vertices (list) – list of scaled Vertex
vector (numpy.array triple) – the vector used to translate the vertices
- getSurfaceArea(faces)¶
Return the surface area of the polyhedron.
- Parameters
faces (list) – all Face objects for this polyhedron
- Return type
float
- Returns
the surface area in Ang.^2
- getReferenceFaces(faces, num_unique)¶
Return a list containing the num_unique number of unique faces. These will be the reference faces used to orient the polyhedron.
- Parameters
faces (list) – all Face objects for this polyhedron
num_unique (int) – the number of symmetry unique faces per polyhedron
- Return type
list
- Returns
unique Face objects to serve as references
- alignPolyhedron(vertices, face_vector, face_along, edge_vector, edge_along)¶
Return the polyhedron vertices rotated so as to align the face and edge vectors.
- Parameters
vertices (list) – list of Vertex
face_vector (numpy.array triple) – the normal of the reference face to be rotated
face_along (numpy.array triple) – the vector onto which the face normal will be rotated
edge_vector (numpy.array triple) – the vector of the reference edge to be rotated
edge_along (numpy.array triple) – the vector onto which the edge vector will be rotated, it is actually this vector’s component that is perpendicular to face_along that is used in the alignment, this is to safeguard against the case where edge_along and face_along are not perpendicular, if they are the same an exception is raised
- Return type
list
- Returns
list of rotated Vertex
- makeTemplate()¶
Create a template, i.e. structure object, for this convex polyhedron.
- Return type
- Returns
the template structure
- addPointsToTemplate(points)¶
Add the specified points to this convex polyhedron’s template.
- Parameters
points (list of numpy.array) – contains the points to be added to the template for this convex polyhedron
- addAlignmentAxesToTemplate()¶
Add unit vectors that mark the primary and secondary alignment axes to the template.
- addNormalsToTemplate()¶
Add the normals of this convex polyhedron to its template.
- getSegmentPlaneIntersections(line_start, line_end)¶
Return a two lists (1) of points where the given line segment intersects the planes containing this polyhedron’s faces and (2) the centers of the faces whose planes are being intersected.
- Parameters
line_start (numpy.array) – the start of the line segment
line_end (numpy.array) – the end of the line segment
- Return type
two lists of numpy.array
- Returns
the intersection points and the centers of faces whose planes are being intersected
- addSegmentPlaneIntersectionsToTemplate(line_start, line_end)¶
Add to this polyhedron’s template the intersection points of the specified line segment and the planes containing the faces. Also draw connections between these points and the centers of the faces containing the planes that are being intersected.
- Parameters
line_start (numpy.array) – the start of the line segment
line_end (numpy.array) – the end of the line segment
- pointInside(point)¶
Return True if the query point is either on or inside of this convex polyhedron.
- Parameters
point (numpy.array) – the point in question
- Return type
bool
- Returns
True if the point in question is either on or inside this polyhedron, False otherwise
- allFacesIntersected()¶
Return True if all faces, not the planes containing those faces but the actual faces, of this convex polyhedron have been intersected at least once given all pointInside queries performed thus far.
- Return type
bool
- Returns
True if all faces have been intersected, False otherwise
- class schrodinger.application.matsci.shapes.Cube(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a cube.
- NAME = 'cube'¶
- DEFAULT = [5.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'platonic'¶
- VERTICES = [array([0.5, 0.5, 0.5]), array([ 0.5, 0.5, -0.5]), array([ 0.5, -0.5, 0.5]), array([ 0.5, -0.5, -0.5]), array([-0.5, 0.5, 0.5]), array([-0.5, 0.5, -0.5]), array([-0.5, -0.5, 0.5]), array([-0.5, -0.5, -0.5])]¶
- INDICES = [[1, 3, 4, 2], [5, 1, 2, 6], [7, 5, 6, 8], [3, 7, 8, 4], [1, 5, 7, 3], [4, 8, 6, 2]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 1¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Tetrahedron(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a tetrahedron.
- NAME = 'tetrahedron'¶
- DEFAULT = [10.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'platonic'¶
- VERTICES = [array([ 0.5 , 0. , -0.35355339]), array([-0.5 , 0. , -0.35355339]), array([0. , 0.5 , 0.35355339]), array([ 0. , -0.5 , 0.35355339])]¶
- INDICES = [[1, 4, 2], [3, 4, 1], [2, 4, 3], [1, 2, 3]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 1¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Octahedron(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage an octahedron.
- NAME = 'octahedron'¶
- DEFAULT = [8.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'platonic'¶
- VERTICES = [array([0.70710678, 0. , 0. ]), array([-0.70710678, 0. , 0. ]), array([0. , 0.70710678, 0. ]), array([ 0. , -0.70710678, 0. ]), array([0. , 0. , 0.70710678]), array([ 0. , 0. , -0.70710678])]¶
- INDICES = [[6, 2, 3], [4, 2, 6], [5, 2, 4], [3, 2, 5], [6, 3, 1], [4, 6, 1], [5, 4, 1], [3, 5, 1]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 1¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Dodecahedron(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a dodecahedron.
- NAME = 'dodecahedron'¶
- DEFAULT = [3.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'platonic'¶
- VERTICES = [array([0.80901699, 0.80901699, 0.80901699]), array([ 0.80901699, 0.80901699, -0.80901699]), array([ 0.80901699, -0.80901699, 0.80901699]), array([ 0.80901699, -0.80901699, -0.80901699]), array([-0.80901699, 0.80901699, 0.80901699]), array([-0.80901699, 0.80901699, -0.80901699]), array([-0.80901699, -0.80901699, 0.80901699]), array([-0.80901699, -0.80901699, -0.80901699]), array([0. , 0.5 , 1.30901699]), array([ 0. , 0.5 , -1.30901699]), array([ 0. , -0.5 , 1.30901699]), array([ 0. , -0.5 , -1.30901699]), array([0.5 , 1.30901699, 0. ]), array([ 0.5 , -1.30901699, 0. ]), array([-0.5 , 1.30901699, 0. ]), array([-0.5 , -1.30901699, 0. ]), array([1.30901699, 0. , 0.5 ]), array([ 1.30901699, 0. , -0.5 ]), array([-1.30901699, 0. , 0.5 ]), array([-1.30901699, 0. , -0.5 ])]¶
- INDICES = [[6, 15, 13, 2, 10], [20, 6, 10, 12, 8], [19, 20, 8, 16, 7], [5, 19, 7, 11, 9], [15, 5, 9, 1, 13], [20, 19, 5, 15, 6], [10, 2, 18, 4, 12], [8, 12, 4, 14, 16], [7, 16, 14, 3, 11], [9, 11, 3, 17, 1], [13, 1, 17, 18, 2], [4, 18, 17, 3, 14]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 1¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Icosahedron(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage an icosahedron.
- NAME = 'icosahedron'¶
- DEFAULT = [5.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'platonic'¶
- VERTICES = [array([0. , 0.5 , 0.80901699]), array([ 0. , 0.5 , -0.80901699]), array([ 0. , -0.5 , 0.80901699]), array([ 0. , -0.5 , -0.80901699]), array([0.5 , 0.80901699, 0. ]), array([ 0.5 , -0.80901699, 0. ]), array([-0.5 , 0.80901699, 0. ]), array([-0.5 , -0.80901699, 0. ]), array([0.80901699, 0. , 0.5 ]), array([ 0.80901699, 0. , -0.5 ]), array([-0.80901699, 0. , 0.5 ]), array([-0.80901699, 0. , -0.5 ])]¶
- INDICES = [[2, 4, 12], [2, 12, 7], [2, 7, 5], [2, 5, 10], [2, 10, 4], [4, 10, 6], [4, 6, 8], [12, 4, 8], [12, 8, 11], [7, 12, 11], [7, 11, 1], [5, 7, 1], [5, 1, 9], [10, 5, 9], [10, 9, 6], [8, 6, 3], [11, 8, 3], [1, 11, 3], [9, 1, 3], [6, 9, 3]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 1¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Cubeoctahedron(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a cubeoctahedron.
- NAME = 'cubeoctahedron'¶
- DEFAULT = [5.0]¶
- DESCRIPTION = ['edge length']¶
- TYPE = 'archimedean'¶
- VERTICES = [array([0.70710678, 0.70710678, 0. ]), array([ 0.70710678, -0.70710678, 0. ]), array([-0.70710678, 0.70710678, 0. ]), array([-0.70710678, -0.70710678, 0. ]), array([0.70710678, 0. , 0.70710678]), array([ 0.70710678, 0. , -0.70710678]), array([-0.70710678, 0. , 0.70710678]), array([-0.70710678, 0. , -0.70710678]), array([0. , 0.70710678, 0.70710678]), array([ 0. , 0.70710678, -0.70710678]), array([ 0. , -0.70710678, 0.70710678]), array([ 0. , -0.70710678, -0.70710678])]¶
- INDICES = [[2, 5, 11], [1, 9, 5], [5, 9, 7, 11], [11, 7, 4], [11, 4, 12, 2], [2, 12, 6], [2, 6, 1, 5], [1, 10, 3, 9], [9, 3, 7], [7, 3, 8, 4], [4, 8, 12], [12, 8, 10, 6], [6, 10, 1], [10, 8, 3]]¶
- NUM_UNIQUE_EDGES = 1¶
- NUM_UNIQUE_FACES = 2¶
- __init__(scale, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
scale (float) – multiplicative scaling factor
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getEdgeLength(circumradius)¶
Return the edge length.
- Parameters
circumradius (float) – circumradius in Angstrom
- Return type
float
- Returns
edge length in Angstrom
- getCircumRadius(length)¶
Return the circumradius.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
circumradius in Angstrom
- getVolume(length)¶
Return the volume.
- Parameters
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Parallelepiped(a_param, b_param, c_param, alpha_param, beta_param, gamma_param, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a parallelepiped.
- NAME = 'parallelepiped'¶
- DEFAULT = [5.0, 10.0, 12.0, 60.0, 45.0, 80.0]¶
- DESCRIPTION = ['edge a length', 'edge b length', 'edge c length', 'edge-edge b-c angle', 'edge-edge a-c angle', 'edge-edge a-b angle']¶
- TYPE = 'prism'¶
- INDICES = [[1, 4, 3, 2], [5, 1, 2, 6], [4, 8, 7, 3], [8, 5, 6, 7], [8, 4, 1, 5], [6, 2, 3, 7]]¶
- NUM_UNIQUE_EDGES = 2¶
- NUM_UNIQUE_FACES = 3¶
- __init__(a_param, b_param, c_param, alpha_param, beta_param, gamma_param, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
a_param (float) – the length of the parallelepiped along edge a
b_param (float) – the length of the parallelepiped along edge b
c_param (float) – the length of the parallelepiped along edge c
alpha_param (float) – the angle between edges b and c
beta_param (float) – the angle between edges a and c
gamma_param (float) – the angle between edges a and b
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- getParallelepipedVertices(origin, a_vec, b_vec, c_vec)¶
Get the vertices of the specified parallelepiped.
- Parameters
origin (numpy.array) – the point of origin of the lattic vectors
a_vec (numpy.array) – the a lattice vector
b_vec (numpy.array) – the b lattice vector
c_vec (numpy.array) – the c lattice vector
- Return type
list of numpy.array
- Returns
the vertices of the parallelepiped
- getVolume(a_vec, b_vec, c_vec)¶
Return the volume.
- Parameters
a_vec (numpy.array) – the a lattice vector
b_vec (numpy.array) – the b lattice vector
c_vec (numpy.array) – the c lattice vector
- Return type
float
- Returns
volume in cubic Angstrom
- class schrodinger.application.matsci.shapes.Slab(a_param, b_param, c_param, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Bases:
schrodinger.application.matsci.shapes.Parallelepiped
,schrodinger.application.matsci.shapes.ConvexPolyhedron
Class to manage a slab.
- NAME = 'slab'¶
- DEFAULT = [5.0, 10.0, 12.0]¶
- DESCRIPTION = ['edge a length', 'edge b length', 'edge c length']¶
- __init__(a_param, b_param, c_param, center=[0.0, 0.0, 0.0], ref_face_idx=1, ref_face_normal_along=array([0., 0., 1.]), ref_edge_idx=1, ref_edge_along=array([1., 0., 0.]))¶
Create an instance.
- Parameters
a_param (float) – the length of the parallelepiped along edge a
b_param (float) – the length of the parallelepiped along edge b
c_param (float) – the length of the parallelepiped along edge c
center (numpy.array) – the center of the polyhedron
ref_face_idx (int) – specifies which of this polyhedron’s available reference faces (symmetry unique faces sorted by decreasing area) to use in the alignment
ref_face_normal_along (numpy.array triple) – specifies the vector along which the reference face normal will be aligned
ref_edge_idx (int) – specifies which of the reference faces available reference edges (symmetry unique edges sorted by decreasing length) to use in the alignment
ref_edge_along (numpy.array triple) – specifies the vector along which the reference edge will be aligned
- class schrodinger.application.matsci.shapes.Sphere(radius, center=[0.0, 0.0, 0.0])¶
Bases:
object
Class to manage a sphere.
- NAME = 'sphere'¶
- DEFAULT = [5.0]¶
- DESCRIPTION = ['radius']¶
- TYPE = 'basic'¶
- NUM_UNIQUE_EDGES = 0¶
- NUM_UNIQUE_FACES = 0¶
- __init__(radius, center=[0.0, 0.0, 0.0])¶
Create an instance.
- Parameters
radius (float) – the radius of the sphere
center (numpy.array) – the center of the sphere
- getVolume(radius)¶
Return the volume.
- Parameters
radius (float) – radius in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- getSurfaceArea(radius)¶
Return the surface area.
- Parameters
radius (float) – radius in Angstrom
- Return type
float
- Returns
surface area in square Angstrom
- pointInside(point)¶
Return True if the query point is either on or inside of this sphere.
- Parameters
point (numpy.array) – the point in question
- Return type
bool
- Returns
True if the point in question is either on or inside this sphere, False otherwise
- class schrodinger.application.matsci.shapes.Cylinder(radius, length, center=[0.0, 0.0, 0.0])¶
Bases:
object
Class to manage a cylinder.
- NAME = 'cylinder'¶
- DEFAULT = [5.0, 25.0]¶
- DESCRIPTION = ['radius', 'length']¶
- TYPE = 'basic'¶
- NUM_UNIQUE_EDGES = 0¶
- NUM_UNIQUE_FACES = 1¶
- __init__(radius, length, center=[0.0, 0.0, 0.0])¶
Create an instance.
- Parameters
radius (float) – the radius of the cylinder
length (float) – the length of the cylinder
center (numpy.array) – the center of the cylinder
- getVolume(radius, length)¶
Return the volume.
- Parameters
radius (float) – radius in Angstrom
length (float) – length in Angstrom
- Return type
float
- Returns
volume in cubic Angstrom
- getSurfaceArea(radius, length)¶
Return the surface area.
- Parameters
radius (float) – radius in Angstrom
length (float) – length in Angstrom
- Return type
float
- Returns
surface area in square Angstrom
- pointInside(point)¶
Return True if the query point is either on or inside of this cylinder.
- Parameters
point (numpy.array) – the point in question
- Return type
bool
- Returns
True if the point in question is either on or inside this cylinder, False otherwise
- schrodinger.application.matsci.shapes.get_shape_object_by_name(name)¶
Return a shape object by name.
- Parameters
name (str) – the name of the object wanted
- Return type
object
- Returns
the shape object
- schrodinger.application.matsci.shapes.get_polygon_area(vertices)¶
Return the area of the specified polygon using the shoelace formula.
- Parameters
vertices (list) – contains all vertices of the polygon, each of which is a two dimensional numpy.array, i.e. x and y
- Return type
float
- Returns
the area of the polygon
- schrodinger.application.matsci.shapes.get_reference_data(data, attr, num_unique, threshold)¶
Return a list containing the num_unique number of unique data. The data will be either a list of Face or a list of Edge characterized using the attr AREA or LENGTH, respectively. These will be the reference data used to orient the polyhedron.
- Parameters
data (list) – either all Face objects for a given polyhedron or all Edge objects for a given face
attr (str) – the attribute on which to characterize the data, either AREA or LENGTH
num_unique (int) – the number of symmetry unique data
threshold (float) – the threshold used to consider if two data are equivalent by attr (either Ang. or Ang.^2)
- Return type
list
- Returns
unique data to serve as references
- schrodinger.application.matsci.shapes.get_parallelepiped_vertices(origin, a_vec, b_vec, c_vec, center=True)¶
Get the vertices of the specified parallelepiped.
- Parameters
origin (numpy.array) – the point of origin of the lattic vectors
a_vec (numpy.array) – the a lattice vector
b_vec (numpy.array) – the b lattice vector
c_vec (numpy.array) – the c lattice vector
center (bool) – specifies whether or not to translate the final vertices so that the centroid is at (0, 0, 0)
- Return type
list of numpy.array
- Returns
the vertices of the parallelepiped
- schrodinger.application.matsci.shapes.get_centroid(vertices)¶
Return the centroid of the provided vertices.
- Parameters
vertices (list) – numpy.array array of points
- Return type
numpy.array
- Returns
the centroid