schrodinger.application.livedesign.mapping_widgets module¶
- class schrodinger.application.livedesign.mapping_widgets.MaestroLDMappingModel(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.models.parameters.CompoundParam
Maestro to LiveDesign mapping model.
Note
If a subclass of
panel_components.ExportTableModel
is used formaestro_properties
then subclass the module and update the type hint to ensure the correct type is used when deserialize the model from json.- entry_data: schrodinger.application.livedesign.entry_types.BaseEntryData¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- ld_destination: schrodinger.application.livedesign.export_models.LDDestination¶
Parameters specifying the destination of the exported data, both LiveDesign server and live report.
- maestro_properties: List[schrodinger.application.livedesign.data_classes.LDData]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- selected_maestro_properties: List[schrodinger.application.livedesign.data_classes.LDData]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- export_table_model: schrodinger.application.livedesign.panel_components.ExportTableModel¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- more_columns_visible: bool¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- match_compounds_by: schrodinger.application.livedesign.export_models.MatchCompoundsBy¶
- match_prop_user_name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- match_prop_data_name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- publish_data: bool¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- use_pose_name: bool¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- pose_name_text: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- pose_name_model: schrodinger.application.livedesign.export_models.PoseNameEditModel¶
Model for the Pose Name Edit Panel.
- Variables
custom_text – the text of the custom text line edit; this value is stored temporarily while the panel is open, and will be copied to
custom_text_final
if the user accepts the panelinclude_property – the check state of the “include property” checkbox
property_name – the structure property (if any) selected as part of the custom pose name; this value is stored temporarily while the panel is open, and will be copied to
property_name_final
if the user accepts the panelproperty_user_name – the text of the structure property label
example_prop_string – the text of the example property
example_name – the text of the example pose name label
entry_data – the system entry data for the panel
custom_text_final – the custom text accepted by the user
property_name_final – the structure property (if any) accepted by the user
- entity_registration_status: schrodinger.application.livedesign.export_models.EntityRegistrationStatus¶
- __init__(export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, *args, **kwargs)¶
- initializeValue()¶
Override to dynamically set up the default value of the param. Useful for default values that are determined at runtime. This is called any time the param is reset.
- initConcrete()¶
Override to customize initialization of concrete params.
- classmethod configureParam()¶
Override this class method to set up the abstract param class (e.g. setParamReference on child params.)
- classmethod getJsonBlacklist()¶
Override to customize what params are serialized.
Implementations should return a list of abstract params that should be omitted from serialization.
- ..NOTE
Returned abstract params must be direct child params of
cls
, e.g.cls.name
, notcls.coord.x
.
- classmethod fromJsonImplementation(json_dict)¶
Sets the value of this compound param value object from a JSON dict.
Warning
This should never be called directly.
- isNewGenericEntity() bool ¶
Check if the current entity data is a generic entity and needs to be registered in LiveDesign.
- Returns
true if the entity is a new generic entity, false otherwise.
- isGenericEntity() bool ¶
Check if the current entity data is a generic entity.
- Returns
true if the entity is a generic entity, false otherwise.
- entity_registration_statusChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- entity_registration_statusReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- entry_dataChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- entry_dataReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- export_table_modelChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- export_table_modelReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- ld_destinationChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- ld_destinationReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- maestro_propertiesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- maestro_propertiesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_compounds_byChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_compounds_byReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_prop_data_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_prop_data_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_prop_user_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- match_prop_user_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- more_columns_visibleChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- more_columns_visibleReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- pose_name_modelChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- pose_name_modelReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- pose_name_textChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- pose_name_textReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- publish_dataChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- publish_dataReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- selected_maestro_propertiesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- selected_maestro_propertiesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- use_pose_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- use_pose_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- class schrodinger.application.livedesign.mapping_widgets.MaestroLDMappingWidget(export_table_view_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableView'>, export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, *args, **kwargs)¶
Bases:
schrodinger.models.mappers.MapperMixin
,schrodinger.ui.qt.basewidgets.BaseWidget
Maestro to LiveDesign export widget which allows the user to select data to export and map the data to LiveDesign properties. Widget has a pop up to select exportable data, table to map exportable data to livedesign properties, matching compounds criteria, publishing setting and pose name specification.
Note
Widget reloads the LD assay endpoints only when the livereport id or name is changed to avoid the high cost network request. Calling code can force a reload via call to
loadLDFolderTree
.- ui_module = <module 'schrodinger.application.livedesign.maestro_ld_mapping_ui' from '/scr/buildbot/savedbuilds/2024-4/NB/build-117/internal/lib/python3.11/site-packages/schrodinger/application/livedesign/maestro_ld_mapping_ui.py'>¶
- model_class¶
alias of
schrodinger.application.livedesign.mapping_widgets.MaestroLDMappingModel
- SHOW_POSE_PAGE = 0¶
- HIDE_POSE_PAGE = 1¶
- DISABLED_TEXTS = {'', '(not defined)'}¶
- __init__(export_table_view_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableView'>, export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, *args, **kwargs)¶
- initSetUp()¶
Creates widget from
ui
and stores itui_widget
.Suggested subclass use: create and initialize subwidgets, and connect signals.
- initLayOut()¶
@overrides: widgetmixins.InitMixin
- makeInitialModel()¶
- defineMappings()¶
Override this in the subclass to define mappings. Should return a list of tuples [(<target>, <param>)]. Targets can be:
a basic widget, like
QLineEdit
orQComboBox
a custom object that inherits
MapperMixin
orTargetMixin
a
TargetSpec
instancea slot
For common widgets, standard signals and getter/setter methods will be used, as defined in
mappers._get_default_access_names()
.For more fine-grained custom control, instantiate a
TargetSpec
object, which allows custom setters, getters, and signals to be specified.Supplying a slot as the first element of the tuple is equivalent to providing
TargetSpec(slot=my_slot)
.Note that all target slots are triggered on
setModel()
as well as in response to the specified signal.The param is an abstract param reference, e.g. MyModel.my_param.
Example:
def defineMappings(self): combo = self.style_combo return [(self.name_le, MyModel.name), (TargetSpec(combo, getter=combo.currentText, setter=combo.setCurrentText), MyModel.style), (self.coord_widget, MyModel.coord), (self._onASLTextChanged, MyModel.asl_text)]
- getSignalsAndSlots(model)¶
Override this method to specify signal and slot pairs that need to be connected/disconnected whenever the model instance is switched using setModel. The model instance is provided as an argument so that instance-specific signals can be used, but any pairs of signals and slots may be returned from this method.
- Returns
a list of 2-tuples where each tuple is a signal, slot pair
- ensureValidity()¶
Ensure the panel is in a valid state.
- getMaestroPropertiesPopUp()¶
- loadLDFolderTree()¶
Gets assay names from LD and adds to the assay column tree model.
Note
It’s an expensive network call and so should be called only when absolutely necessary.
- class schrodinger.application.livedesign.mapping_widgets.MappingMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)¶
Bases:
enum.Enum
Indicate whether the user is creating or editing mappings.
- CREATE = 1¶
- EDIT = 2¶
- class schrodinger.application.livedesign.mapping_widgets.CreateOrEditMappingsModel(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.models.parameters.CompoundParam
- name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- mapping_model: schrodinger.application.livedesign.mapping_widgets.MaestroLDMappingModel¶
Maestro to LiveDesign mapping model.
Note
If a subclass of
panel_components.ExportTableModel
is used formaestro_properties
then subclass the module and update the type hint to ensure the correct type is used when deserialize the model from json.
- __init__(export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, *args, **kwargs)¶
- initializeValue()¶
Override to dynamically set up the default value of the param. Useful for default values that are determined at runtime. This is called any time the param is reset.
- mapping_modelChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- mapping_modelReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- modeChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- modeReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- class schrodinger.application.livedesign.mapping_widgets.CreateOrEditMappingsDialog(*args, export_table_view_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableView'>, export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, **kwargs)¶
Bases:
schrodinger.ui.qt.basewidgets.BaseOptionsDialog
Dialog to specify the mapping of the exportable Maestro data to LiveDesign data. User has the option to specify the mode as
MappingMode.CREATE
orMappingMode.EDIT
which will be used to set the appropriate window title.- model_class¶
alias of
schrodinger.application.livedesign.mapping_widgets.CreateOrEditMappingsModel
- __init__(*args, export_table_view_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableView'>, export_table_model_class=<class 'schrodinger.application.livedesign.panel_components.ExportTableModel'>, **kwargs)¶
- initSetOptions()¶
Suggested subclass use: set instance variables, excluding layouts and subwidgets. Also use here to (optionally) apply the legacy stylesheet spacing settings (PANEL-19101).
- initSetUp()¶
Creates widget from
ui
and stores itui_widget
.Suggested subclass use: create and initialize subwidgets, and connect signals.
- initLayOut()¶
@overrides: widgetmixins.InitMixin
- makeInitialModel()¶
- defineMappings()¶
Override this in the subclass to define mappings. Should return a list of tuples [(<target>, <param>)]. Targets can be:
a basic widget, like
QLineEdit
orQComboBox
a custom object that inherits
MapperMixin
orTargetMixin
a
TargetSpec
instancea slot
For common widgets, standard signals and getter/setter methods will be used, as defined in
mappers._get_default_access_names()
.For more fine-grained custom control, instantiate a
TargetSpec
object, which allows custom setters, getters, and signals to be specified.Supplying a slot as the first element of the tuple is equivalent to providing
TargetSpec(slot=my_slot)
.Note that all target slots are triggered on
setModel()
as well as in response to the specified signal.The param is an abstract param reference, e.g. MyModel.my_param.
Example:
def defineMappings(self): combo = self.style_combo return [(self.name_le, MyModel.name), (TargetSpec(combo, getter=combo.currentText, setter=combo.setCurrentText), MyModel.style), (self.coord_widget, MyModel.coord), (self._onASLTextChanged, MyModel.asl_text)]