schrodinger.application.desmond.packages.analysis module¶
Classes and functions for trajectory-based analysis
Copyright Schrodinger, LLC. All rights reserved.
- class schrodinger.application.desmond.packages.analysis.GroupType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)¶
Bases:
enum.EnumEnum representing different methods to grouping method to group atoms.
Currently supported types are: - MOLECULE: Atoms are grouped by the molecule they belong to. - RESIDUE: Atoms are grouped by the residue they belong to.
- MOLECULE = 'molecule'¶
- RESIDUE = 'residue'¶
- schrodinger.application.desmond.packages.analysis.is_small_struc(atoms)¶
A simple API to determine whether a molecular structure is small.
- Parameters
atoms (
list) – A list of atoms in the structure. The atoms can be atom IDs or atom-class instances.
- class schrodinger.application.desmond.packages.analysis.Pbc(box)¶
Bases:
object- __init__(box)¶
This implementation supports triclinic cell.
- Parameters
box (
numpy.ndarray) – 3x3 matrix whose ROWS are primitive cell vectors. For amsys.Systeminstance, callmsys_model.cellto get this matrix. For atraj.Frameinstance, callfr.boxto get it. For aCmsinstance, callnumpy.reshape(cms_model.box, [3, 3])to get it.
- property box¶
- property volume¶
- property inv_box¶
- calcMinimumImage(ref_pos, pos)¶
Calculates the minimum image of a position vector
posrelative to another position vectorref_pos.posandref_poscan also be arrays of 3D vectors. In this case, they must be of the same size, and minimum images will be calculated for each element inposandref_pos.- Parameters
ref_pos (
numpy.ndarray. Either 1x3 or Nx3.) – Reference position vector(s)pos (
numpy.ndarray. Either 1x3 or Nx3.) – Position vector(s) of which we will calculate the minimum image.
- Return type
numpy.ndarraywithnumpy.float64elements- Returns
The position vector(s) of the mininum image. This function does NOT mutate any of the input vectors.
- calcMinimumDiff(from_pos, to_pos)¶
Calculates the difference vector from
from_posto the minimum image ofto_pos.posandref_poscan also be arrays of 3D vectors. In this case, they must be of the same size, and minimum image difference will be calculated for each element inposandref_pos.- Parameters
from_pos (
numpy.ndarray. Either 1x3 or Nx3) – Reference position vector(s)to_pos (
numpy.ndarray. Either 1x3 or Nx3) – Position vector(s) of which we will calculate the minimum image.
- Return type
numpy.ndarraywithnumpy.float64elements- Returns
The difference vector(s). This function does NOT mutate any of the input vectors.
- wrap(pos)¶
Puts a coordinate back into the box. If the coordinate is already in the box, this function will return a new position vector that equals the original vector.
- Return type
numpy.ndarraywithnumpy.float64elements- Returns
A new position vector which is within the box. This function does NOT mutate and return the input vector
pos.
- isWithinCutoff(pos0, pos1, cutoff_sq)¶
Return True if any of pos0 and pos1 are within the cutoff distance.
- Parameters
cutoff_sq (
float) – = cutoff x cutoff
- class schrodinger.application.desmond.packages.analysis.CenterOf(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseBase class for computing averaged center of a group of atoms, with optional weights. Periodic boundary condition is taken into account.
N.B.: The calculated center is an unwrapped coordinate.
- __init__(gids: List[int], weights: Optional[List[float]] = None, return_unwrapped_atompos=False)¶
- Parameters
return_unwrapped_atompos – if
False, return the unwrapped center. Otherwise return both unwrapped center and the unwrapped positions of the selected atoms.
- class schrodinger.application.desmond.packages.analysis.Com(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.CenterOfClass for computing averaged position weighted by atomic mass under periodic boundary condition.
- Basic usage:
ana = Com(msys_model, cms_model, gids=[1, 23, 34, 5, 6]) results = analyze(tr, ana)
where
tris a trajectory, andresultscontain alistof unwrapped centers of mass asfloats, onefloatfor each frame. If return_unwrapped_atompos isTrue,resultscontain a list of 2-tuples: (unwrapped-center-of-mass, [unwrapped-positions-of-involved-atoms]), and each 2-tuple in the list corresponds to a trajectory frame.- __init__(msys_model, cms_model, asl=None, gids=None, return_unwrapped_atompos=False)¶
- Parameters
asl (
str) – ASL expression to specify the atom selectiongids (
listofint) – GIDs of atomsreturn_unwrapped_atompos – if
False, return the unwrapped center. Otherwise return both unwrapped center and the unwrapped positions of the selected atoms.
Both
msys_modelandcms_modelmust be previously obtained through theread_cmsfunction. They both should have the same atom coordinates and the same simulation box matrix.cms_modelis used to obtain atom GIDs from ASL selection.msys_modelis used to retrieve atom attribute from GIDs.Either
aslorgidsmust be specified, but not both.
- class schrodinger.application.desmond.packages.analysis.Coc(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.ComClass for computing center of charge under periodic boundary condition. Pseudo atoms are included.
For each frame, the results will be the unwrapped-center-of-charge. If return_unwrapped_atompos is
True, the results will be a 2-tuple: (unwrapped-center-of-charge, [unwrapped-positions-of-involved-atoms]).- __init__(msys_model, cms_model, asl=None, gids=None, return_unwrapped_atompos=False)¶
Refer to the docstring of
Com.__init__.
- class schrodinger.application.desmond.packages.analysis.Centroid(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.CenterOfClass for computing centroid under periodic boundary condition.
For each frame, the results will be the unwrapped centroid. If return_unwrapped_atompos is
True, the results will be a 2-tuple: (unwrapped-centroid, [unwrapped-positions-of-involved-atoms]).- __init__(msys_model, cms_model, asl=None, gids=None, return_unwrapped_atompos=False)¶
Refer to the docstring of
Com.__init__.
- class schrodinger.application.desmond.packages.analysis.Vector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate the vector between two xids. Result is a vector for each trajectory frame.
- __init__(msys_model, cms_model, from_xid, to_xid)¶
- class schrodinger.application.desmond.packages.analysis.Distance(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate the distance between two xids. Result is a scalar (distance in Angstroms) for each trajectory frame.
- __init__(msys_model, cms_model, xid0, xid1)¶
- class schrodinger.application.desmond.packages.analysis.Angle(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate the angle formed between three xids. Result is a scalar (angle in degrees) for each trajectory frame.
- __init__(msys_model, cms_model, xid0, xid1, xid2)¶
The angle is formed by the vectors
xid1`==>`xid0andxid1`==>`xid2.
- class schrodinger.application.desmond.packages.analysis.Torsion(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate the torsion formed between four xids. Result is a scalar (dihedral angle in degrees) for each trajectory frame.
- __init__(msys_model, cms_model, xid0, xid1, xid2, xid3)¶
The torsion is defined by the four atoms:
0 o o 3 \ / \ / 1 o-----o 2
- class schrodinger.application.desmond.packages.analysis.PlanarAngle(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate planar angle formed among six xids. The first three xids define the first plane and the latter three xids define the second plane. Result is a list of planar angles in degrees for the trajectory frames.
- __init__(msys_model: schrodinger.application.desmond.packages.msys.System, cms_model: schrodinger.application.desmond.cms.Cms, xid0: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], xid1: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], xid2: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], xid3: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], xid4: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], xid5: Union[int, schrodinger.application.desmond.packages.analysis.CenterOf], minangle: bool = True)¶
- Parameters
msys_model – defines the system structure and atomic mapping
cms_model – defines the system structure and atomic mapping
xid* – integer representing an aid or
CenterOftype (Com,Coc,Centroid)minangle –
Trueto restrict the returned angle to the range [0, 90] degrees, treating the order of atoms defining the plane as unimportant and ignoring the directionality of the plane normals.Falseto return the angle in the range [0, 180] degrees.
- class schrodinger.application.desmond.packages.analysis.FittedPlanarAngle(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate planar angle formed among two groups of atoms, each of containing 3 or more atoms. The first list contains xids of the first group and the second list contains xids of the second group. A best-fitting plane is calculated for each group of xids. Result is a list of planar angles in degrees for the trajectory frames.
This analyzer is useful for such cases as calculating angles between two rings.
- __init__(msys_model: schrodinger.application.desmond.packages.msys.System, cms_model: schrodinger.application.desmond.cms.Cms, xids0: List[Union[int, schrodinger.application.desmond.packages.analysis.CenterOf]], xids1: List[Union[int, schrodinger.application.desmond.packages.analysis.CenterOf]], minangle: bool = True)¶
- Parameters
msys_model – defines the system structure and atomic mapping
cms_model – defines the system structure and atomic mapping
xids* – list of integers representing aid or
CenterOftypes (Com,Coc,Centroid)minangle –
Trueto restrict the returned angle to the range [0, 90] degrees, treating the order of atoms defining the plane as unimportant and ignoring the directionality of the plane normals.Falseto return the angle in the range [0, 180] degrees.
- class schrodinger.application.desmond.packages.analysis.Gyradius(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerClass for computing radius of gyration under periodic boundary condition.
For each frame, the result is the radius of gyration as
float- __init__(msys_model, cms_model, asl=None, gids=None, mass_weighted: bool = False)¶
- class schrodinger.application.desmond.packages.analysis.MassAvgVel(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.ComClass for computing mass-averaged velocity. The trajectory should contain velocities data.
For each frame, the result is
numpy.ndarrayoffloat
- class schrodinger.application.desmond.packages.analysis.PosTrack(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseClass for tracking positions of selected atoms in a trajectory. Pseudo atoms are included.
Since periodic boundary condition is assumed in the MD simulation, the atom positions are wrapped back into the simulation box when they move out of the box. The PosTrack class unwraps the atom positions with respect to their positions in the previous frame. It can be used when atom positions need to be tracked over time, such as diffusion.
- __init__(msys_model, cms_model, asl=None, gids=None)¶
Refer to the docstring of
Com.__init__.
- schrodinger.application.desmond.packages.analysis.RadiusOfGyration¶
alias of
schrodinger.application.desmond.packages.analysis.Gyradius
- schrodinger.application.desmond.packages.analysis.CenterOfMotion¶
alias of
schrodinger.application.desmond.packages.analysis.MassAvgVel
- schrodinger.application.desmond.packages.analysis.Position¶
alias of
schrodinger.application.desmond.packages.analysis.PosTrack
- class schrodinger.application.desmond.packages.analysis.Ramachandran(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis._RamachandranCalculate the Phi and Psi torsions for selected atoms.
Usage example:
ana = Ramachandran(msys_model, cms_model, ‘protein and res.num 20-30’) results = analyze(tr, ana)
where
tris a trajectory, andresultsis alist, and each element in thelistis alist: [(phi_0, psi_0), (phi_1, psi_1),] for the corresponding trajectory frame.- __init__(msys_model, cms_model, asl)¶
- Parameters
asl (
str) – ASL expression to specify the residues
- reduce(results, *_, **__)¶
- schrodinger.application.desmond.packages.analysis.align_pos(pos, fit_pos, fit_ref_pos, weights=None, return_trans_rot=False, allow_improper_rotation=False, is_precentered=False)¶
Align
posusing transformations (rotation and translation) derived from convertingfit_postofit_ref_pos. Weighted Kabsch algorithm is used to obtain the transformations.- Parameters
allow_improper_rotation – If not set, only proper rotation is allowed.
is_precentered (
bool) –Trueif all position arrays, i.e.,pos,fit_pos, andfit_ref_pos, have been properly centered. Note thatposandfit_posshould be centered to the origin with respect toweights.
- Returns
aligned
posand optionally the transformation matrices ifreturn_trans_rotis set to beTrue- Return type
Nx3
numpy.ndarrayifreturn_transis False. Otherwise (numpy.ndarray, (1x3numpy.ndarray, 3x3numpy.ndarray)) where the 1x3 array is the translation vector, and the 3x3 array is the rotation matrix. The aligned position is calculated as numpy.dot(pos - trans_vec, rot_mat).
- class schrodinger.application.desmond.packages.analysis.PosAlign(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CenteredSoluteAnalysisThis analyzer first centers the solute atoms. If
fit_aidsandfit_ref_posare provided, it further aligns the given trajectory frames: first calculate the rotation / translation transformation to fit the sub-structure defined byfit_aidsto the given geometry (fit_ref_pos), and then apply the transformation to the coordinates of the selected atoms (aids). The returned value is the transformed coordinates foraids.- __init__(msys_model, cms_model, aids, fit_aids, fit_ref_pos)¶
- Parameters
fit_ref_pos (Mx3
numpy.ndarrayorNone) – positions of reference conformer structure for translation/rotation calculation
Both
msys_modelandcms_modelmust be previously obtained through theread_cmsfunction.
- class schrodinger.application.desmond.packages.analysis.RMSD(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.PosAlignRoot Mean Square Deviation with respect to reference positions, with optional alignment fitting.
See
RMSFdocstring for a detailed example (replace “RMSF” with “RMSD”).If spikes are seen, call
topo.make_glued_topologyfirst.- __init__(msys_model, cms_model, aids, ref_pos, fit_aids=None, fit_ref_pos=None, in_place=False)¶
See
PosAlignfor parameters.- Parameters
ref_pos (Nx3
numpy.ndarray) – positions of reference conformer structurein_place – if
True, calculate RMSD without applying transformations onref_pos
Typically,
aidsandfit_aidscome from a common source whereasref_posandfit_ref_poscome from another common source.
- class schrodinger.application.desmond.packages.analysis.RMSF(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.PosAlignPer-atom Root Mean Square Fluctuation with respect to averaged position over the trajectory, with optional alignment fitting.
Example: calculate ligand RMSF with protein backbone aligned
>>> backbone_asl = 'backbone and not (atom.ele H) and not (m.n 4)' >>> backbone_aids = cms_model.select_atom(backbone_asl) >>> ligand_aids = cms_model.select_atom('ligand')
>>> # suppose the backbone reference position comes from a trajectory frame >>> backbone_gids = topo.aids2gids(cms_model, backbone_aids, include_pseudoatoms=False) >>> backbone_ref_pos = a_frame.pos(backbone_gids)
>>> ana = RMSF(msys_model, cms_model, ligand_aids, backbone_aids, backbone_ref_pos) >>> result = analysis.analyze(a_trajectory, ana)
Here result is a length N numpy array where N is the number of ligand atoms. If spikes are seen, call
topo.make_glued_topologybefore any analysis:>>> topo.make_glued_topology(msys_model, cms_model)
This call will change the topology of msys_model, i.e., add ‘bonds’ for atoms that are close and belong to different molecules, using the positions in cms_model as gold standard. This change only affects position unwrapping for certain trajectory APIs such as topo.make_whole(), topo.center().
- __init__(msys_model, cms_model, aids, fit_aids, fit_ref_pos, in_place=False)¶
- Parameters
fit_ref_pos (Mx3
numpy.ndarray) – positions of reference conformer structure for translation/rotation calculationin_place – if
True, calculate RMSF without applying alignment transformations
Both
msys_modelandcms_modelmust be previously obtained through theread_cmsfunction.
- reduce(pos_t, *_, **__)¶
Temporal average of the RMSF over the trajectory
- Return type
length N
numpy.ndarray
- class schrodinger.application.desmond.packages.analysis.LigandRMSD(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.PosAlignLigand Root Mean Square Deviation from reference positions, with optional alignment fitting. Taking conformational symmetry into account.
- __init__(msys_model, cms_model, aids, ref_pos, fit_aids=None, fit_ref_pos=None)¶
see
RMSD.__init__for parameters
- schrodinger.application.desmond.packages.analysis.get_pdb_protein_bfactor(fsys_ct, aids)¶
Calculate per-residue b-factor from pdb data for the selected atoms.
- Parameters
aids (
listofint) – Atom selections- Return type
numpy.ndarrayoffloat
- class schrodinger.application.desmond.packages.analysis.ProteinSF(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.RMSFPer-frame per-residue Square Fluctuation (SF) with respect to averaged positions over the trajectory, with optional alignment fitting.
It returns a tuple of (residue labels, N_frame x N_residue matrix). Each matrix entry is the mass-weighted SF averaged over the residue’s atoms.
- __init__(msys_model, cms_model, aids, fit_aids, fit_ref_pos, in_place=False)¶
see
RMSF.__init__for parameters
- reduce(pos_t, *_, **__)¶
:rtype : list[string], list[numpy.ndarray] :return: residue tags and per-frame per-residue SF matrix
- class schrodinger.application.desmond.packages.analysis.ProteinRMSF(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.ProteinSFPer-residue Root Mean Square Fluctuation with respect to averaged positions over the trajectory, with optional alignment fitting.
- reduce(pos_t, *_, **__)¶
:rtype : list[string], list[float] :return: residue tags and RMSF for each residue
- class schrodinger.application.desmond.packages.analysis.Dipole(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerElectric dipole moment of the selected atoms, in unit of debye.
The result may not be reliable when the structure of the selected atoms are large compared to the simulation box. The unwrapping with respect to periodic boundary condition provided by
CenterOfis based on circular mean and may not be adequate.- EA2DEBYE = 4.802813198¶
- __init__(msys_model, cms_model, aids)¶
- class schrodinger.application.desmond.packages.analysis.AxisDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseBasis vector of 3D axis
- __init__(axis)¶
- Parameters
axis (
str) – axis name, ‘X’, ‘Y’ or ‘Z’
- class schrodinger.application.desmond.packages.analysis.MomentOfInertia(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerMoment of inertia tensor
Result is 3x3
numpy.ndarray- __init__(msys_model, cms_model, aids)¶
- class schrodinger.application.desmond.packages.analysis.MomentOfInertiaDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeDynamicAslAnalyzerThis class calculates the principal moment-of-inertia for each of the selected molecules.
Result: A list of vectors
- class schrodinger.application.desmond.packages.analysis.SmartsDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeDynamicAslAnalyzerDirection of atom pairs from SMARTS pattern. The SMARTS pattern should pick bonds, i.e., atom pairs, e.g.,
smarts='CC'.Convention: The vector is pointing from the first atom to the second.
- __init__(msys_model, cms_model, asl, smarts)¶
- reduce_vec(n, m)¶
Calculate Legendre polynomial P2 using the inner product of n and m as the input.
- Parameters
m (N’x3
numpy.arraywhere N’ is the number of chemical bonds.) – Output ofSmartsDirectorfor one frame
- class schrodinger.application.desmond.packages.analysis.SystemDipoleDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeDynamicAslAnalyzerDirection of electric dipole moment of all the selected atoms
- class schrodinger.application.desmond.packages.analysis.DipoleDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis.SystemDipoleDirectorDipole direction for each molecule in the selection
- class schrodinger.application.desmond.packages.analysis.LipidDirector(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerDirection of CH bond for carbon atoms on lipid tail
- __init__(msys_model, cms_model, asl, tail_type)¶
- Parameters
tail_type – ‘sn1’, ‘sn2’, ‘all’
- schrodinger.application.desmond.packages.analysis.reduce_vec(n, m)¶
Calculate Legendre polynomial P2 using the inner product of n and m as the input.
- schrodinger.application.desmond.packages.analysis.reduce_vec_list(n, m)¶
Calculate Legendre polynomial P2 using the inner product of n and m as the input.
- schrodinger.application.desmond.packages.analysis.reduce_lipid_vec_list(n, m)¶
Calculate Legendre polynomial P2 using the inner product of n and m as the input. Return its absolute value.
- class schrodinger.application.desmond.packages.analysis.OrderParameter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseGiven the director (local or global), and the descriptor (local or global), calculate the order parameter <P2> for each frame:
S = 1/N sum_i ((3 * (n dot m_i)^2 -1) / 2)
where n is the director vector and m is the descriptor vector. For example, n is the z axis and m is the electric dipole moment.
Typical usage includes:
Director Descriptor result Axis Lipid avg over carbon type Axis Smarts avg over bond type Axis Dipole avg over molecule SystemDipole Dipole avg over molecule Dipole Smarts avg over bond type
To extend its functionality, implement to the
GeomAnalyzerBaseinterface and provide the reduction rule as callable.- __init__(vec1, vec2, reducer)¶
- Parameters
vec1 – a
GeomAnalyzerBasethat computes directorvec2 – a
GeomAnalyzerBasethat computes descriptor
Typically both director and descriptor return Nx3 vectors for each frame, where N depends on the context. In this case, one should make sure that the orders of these vectors match. For example, if both director and descriptor give one vector per molecule, then the implementation should guarantee the molecule orders are the same in vec1() and vec2().
For axis director which returns 1x3 vector, reduction with descriptor is taken care of by numpy broadcasting. For more complicated cases where director and descriptor have incompatible dimensions, the user needs to provide special-purpose reduce function, see
SmartsDirector.reduce_vecfor example.
- class schrodinger.application.desmond.packages.analysis.MoleculeWiseCom(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeDynamicAslAnalyzerCalculate the center-of-mass for each of the selected molecules.
Result: A list of Nx3 numpy arrays, where N is the number of molecules. Note that the array size N may vary from frame to frame if the ASL is dynamic.
- class schrodinger.application.desmond.packages.analysis.AtomicPosition(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.DynamicAslAnalyzerExtract the positions of the selected atoms.
Result: A list of Nx3 numpy arrays, where N is the number of atoms. Note that the array size N may vary from frame to frame if the ASL is dynamic.
- __init__(msys_model, cms_model, asl=None)¶
- class schrodinger.application.desmond.packages.analysis.SecondaryStructure(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisCalculate the secondary-structure property for selected atoms. The result is a list of
intnumbers, each of which corresponds to a selected atoms and is one of the following values:SecondaryStructure.NONE SecondaryStructure.LOOP SecondaryStructure.HELIX SecondaryStructure.STRAND SecondaryStructure.TURN
The selected atoms can be obtained by calling the
aidsmethod.- NONE = -1¶
- LOOP = 0¶
- HELIX = 1¶
- STRAND = 2¶
- TURN = 3¶
- __init__(msys_model, cms_model, aids: List[int])¶
- Parameters
aids – IDs of atoms to calculate the secondary-structure property for
- reduce(results, *_, **__)¶
- class schrodinger.application.desmond.packages.analysis.SolventAccessibleSurfaceAreaByResidue(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisCalculate the relative SASA broken down by residues. The values are relative to the average SASAs as given by
SolventAccessibleSurfaceAreaByResidue.DIPEPTIDE_SASA.The result is a 2-tuple: ([residue-names], [relative-SASAs]), where relative-SASAs has the structure of [[relative-SASA for each residue] for each frame]
- DIPEPTIDE_SASA = {'ACE': (115.4897, 3.5972), 'ALA': (128.7874, 4.715), 'ARG': (271.5978, 9.5583), 'ASH': (175.7041, 5.1167), 'ASN': (179.5393, 4.632), 'ASP': (173.4664, 6.9882), 'CYS': (158.1909, 5.3923), 'CYX': (99.3829, 10.7089), 'GLH': (203.2443, 6.2765), 'GLN': (208.6171, 6.5794), 'GLU': (201.466, 6.9328), 'GLY': (94.1021, 5.1977), 'HID': (208.8269, 5.9202), 'HIE': (218.799, 5.6097), 'HIP': (221.1223, 8.3364), 'HIS': (208.8269, 5.9202), 'ILE': (207.2248, 5.0012), 'LEU': (211.8823, 5.149), 'LYN': (235.5351, 6.8589), 'LYS': (242.8734, 9.351), 'MET': (218.5396, 6.9879), 'NMA': (97.3748, 4.0446), 'PHE': (243.4793, 5.9699), 'PRO': (168.783, 5.5848), 'SER': (140.6706, 4.9089), 'THR': (169.0046, 4.9049), 'TRP': (287.0895, 6.892), 'TYR': (256.8637, 6.2782), 'UNK': (189.961, 6.3732), 'VAL': (181.2543, 4.864)}¶
- __init__(msys_model, cms_model, asl, resolution=None)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- reduce(results, *_, **__)¶
- class schrodinger.application.desmond.packages.analysis.MolecularSurfaceArea(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CenteredSoluteAnalysisCalculate the molecular surface area. The result is a single scalar number per frame.
- __init__(msys_model, cms_model, asl, grid_spacing=None)¶
- Parameters
asl (
str) – ASL expression to select atoms whose secondary-structure property is of interest.
- class schrodinger.application.desmond.packages.analysis.SolventAccessibleSurfaceArea(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisCalculate solvent accessible surface area for selected atoms.
- __init__(msys_model, cms_model, asl, exclude_asl=None, resolution=None)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- class schrodinger.application.desmond.packages.analysis.PolarSurfaceArea(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CenteredSoluteAnalysisCalculate polar surface area for selected atoms.
N.B.: Only O and N atoms are considered as polar atoms in this implementation.
- __init__(msys_model, cms_model, asl, resolution=None)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- class schrodinger.application.desmond.packages.analysis.HydrogenBondFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisFind hydrogen bonds between two sets of atoms. The result has the structure of [[(acceptor atom ID, donor atom ID) for each H bond] for each frame].
Basic usage:
ana = HydrogenBondFinder(msys_model, cms_model, aids1, aids2) results = analyze(tr, ana)
- __init__(msys_model, cms_model, aids1, aids2, max_dist=2.8, min_donor_angle=120.0, min_acceptor_angle=90.0, max_acceptor_angle=180.0)¶
- Parameters
aids1 (list or None) – A list of atom indices for the first atom set. All atoms will be used if it is None.
aids2 (list or None) – A list of atom indices for the second atom set. All atoms will be used if it is None.
- class schrodinger.application.desmond.packages.analysis.HalogenBondFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisFind halogen bonds between two sets of atoms. The result has the structure of [[(acceptor atom ID, donor atom ID) for each bond] for each frame].
Basic usage:
ana = HalogenBondFinder(msys_model, cms_model, protein_aids, ligand_aids) results = analyze(tr, ana)
- __init__(msys_model, cms_model, aids1, aids2, max_dist=3.5, min_donor_angle=140.0, min_acceptor_angle=90.0, max_acceptor_angle=170.0)¶
- schrodinger.application.desmond.packages.analysis.get_ligand_fragments(lig_ct)¶
Decompose the ligand into several fragments using the murcko rules.
- Returns
ligand fragments
- Return type
list. Each element is alistofint.
- class schrodinger.application.desmond.packages.analysis.HydrophobicInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerCalculate hydrophobic interactions between protein and ligand, with hbonds and pi-pi interactions excluded.
The result has the structure of:
[{ 'HydrophobicResult': [`_HydrophobicInter.Result` for each interaction], 'PiPiResult': [`ProtLigPiInter.Pipi` for each interaction], 'PiCatResult': [`ProtLigPiInter.PiLCatP` or `ProtLigPiInter.PiPCatL` for each interaction], 'HBondResult': [`ProtLigHbondInter.Result` for each interaction], } for each frame]- __init__(msys_model, cms_model, prot_asl, lig_asl, contact_cutoff=6.0, hydrophobic_search_cutoff=3.2, hbond_cutoff=2.8)¶
- class schrodinger.application.desmond.packages.analysis.HydrophobicInterFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisThis method is adopted from the following script: mmshare/python/common/display_hydrophobic_interactions.py While a similar analyzer
HydrophobicInteris used specifically for finding Protein-Ligand hydrophobic interactions, this method seems more general. We may want to transition using this method for detecting Protein-Ligand hydrophobic interactions.The frames are first centered on
aids1selection.- HYDROPHOB_ASL = 'SMARTS.[#6!$([C,c][O,o])&!$([C,c][N,n]),S&^3,P,Cl,Br,I]'¶
- __init__(msys_model, cms_model, aids1, aids2, good_cutoff_ratio=1.3, bad_cutoff_ratio=0.89)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- class schrodinger.application.desmond.packages.analysis.SaltBridgeFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisFind salt bridges present between two sets of atoms. This class wraps around the
get_salt_bridgesfunction.The result has the structure of:
[[(anion atom, cation atom) for each bridge] for each frame]
where the atoms are
structure._StructureAtom.- __init__(msys_model, cms_model, aids1, aids2, cutoff=5.0)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- class schrodinger.application.desmond.packages.analysis.ProtLigPolarInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerCalculate polar interactions between protein and ligand, with hbonds and water bridges excluded.
The result has the structure of [{ ‘PolarResult’: [
_ProtLigSaltBridges.Resultfor each bridge], ‘HBondResult’: [ProtLigHbondInter.Resultfor each H bond], ‘WaterBridgeResult’: [WaterBridges.Resultfor each bridge], } for each frame]- __init__(msys_model, cms_model, prot_asl, lig_asl, contact_cutoff=6.0, salt_bridge_cutoff=5.0, hbond_cutoff=2.8)¶
- class schrodinger.application.desmond.packages.analysis.MetalInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerInteractions between metal elements and protein/ligand atoms.
The result has the structure of [{ ‘MetalResult’: [
_MetalInter.MetalPor_MetalInter.MetalLfor each interaction] } for each frame]- MetalP¶
alias of
schrodinger.application.desmond.packages.analysis._MetalP
- MetalL¶
alias of
schrodinger.application.desmond.packages.analysis._MetalL
- __init__(msys_model, cms_model, prot_asl, lig_asl, metal_asl=None, contact_cutoff=6.0, metal_cutoff=3.4)¶
- schrodinger.application.desmond.packages.analysis.PiPiInteraction¶
alias of
schrodinger.application.desmond.packages.analysis._PiPiInteraction
- schrodinger.application.desmond.packages.analysis.CatPiInteraction¶
alias of
schrodinger.application.desmond.packages.analysis._PiCatInteraction
- class schrodinger.application.desmond.packages.analysis.PiPiFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis._PiInteractionFinderFind Pi-Pi interactions present between two sets of atoms, or within one set of atoms.
The result has the structure of [[
PiPiInteractionfor each interaction] for each frame]
- class schrodinger.application.desmond.packages.analysis.CatPiFinder(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.analysis._PiInteractionFinderFind Cation-Pi interactions present between two sets of atoms, or within one set of atoms. With two sets of atom selections, it computes both cations in selection 1 with respect to rings in selection 2, cations in selection 2 with respect to rings in selection 1, but not within the same selection.
The result has the structure of [[
CatPiInteractionfor each interaction] for each frame]
- class schrodinger.application.desmond.packages.analysis.WatLigFragDistance(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerDistance between water oxygen atom and its closest ligand fragment, with water bridges excluded.
The result has the structure of [{ ‘LigWatResult’: [
_WatLigFragDistance.Resultfor each water-ligand-fragment-pair], ‘WaterBridgeResult’: [WaterBridges.Resultfor each bridge] } for each frame]- __init__(msys_model, cms_model, prot_asl, lig_asl, contact_cutoff=6.0, hbond_cutoff=2.8)¶
- class schrodinger.application.desmond.packages.analysis.ProtLigInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerComposition of various protein ligand interactions.
The result has the structure of [{ ‘WaterBridgeResult’: [
WaterBridges.Resultfor each bridge], ‘LigWatResult’: [_WatLigFragDistance.Resultfor each water-ligand-fragment-pair], ‘HBondResult’: [ProtLigHbondInter.Resultfor each interaction], ‘PiPiResult’: [ProtLigPiInter.Pipifor each interaction], ‘PiCatResult’: [ProtLigPiInter.PiLCatPorProtLigPiInter.PiPCatLfor each interaction], ‘MetalResult’: [_MetalInter.MetalPor_MetalInter.MetalLfor each interaction], ‘PolarResult’: [_ProtLigSaltBridges.Resultfor each bridge], }]- __init__(msys_model, cms_model, prot_asl, lig_asl, metal_asl=None)¶
- Parameters
prot_asl (
str) – ASL expression to specify protein atomslig_asl (
str) – ASL expression to specify ligand atomsmetal_asl (
strorNone) – ASL expression to specify metal atoms. IfNone, use default values.
- class schrodinger.application.desmond.packages.analysis.AmorphousCrystalInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerComposition of various interactions between a specified molecule and its crystal-mates.
The result has the structure of:
{'HBondResult': [number of `HydrogenBondFinder.Result` per frame], 'HalBondResult': [number of `HalogenBondFinder.Result` per frame], 'PiPiResult': [number of `PiPiFinder.Result` per frame], 'CatPiResult': [number of `CatPiFinder.Result` per frame], 'PolarResult': [number of `SaltBridgeFinder.Result` per frame] 'HydrophobResult': [number of `HydrophobicInterFinder.Result` per frame]}- RESULT_NAMES = ['HBondResult', 'HalBondResult', 'PiPiResult', 'CatPiResult', 'PolarResult', 'HydrophobResult']¶
- __init__(msys_model, cms_model, asl)¶
Selection of molecule of interest is passed through
aslvariable. Environment selection is generated by excluding theasland waters.- Parameters
asl (
str) – ASL expression to specify selection atoms
- reduce(results)¶
- class schrodinger.application.desmond.packages.analysis.VolumeMapper(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseThis class calculates the 3D histogram of selected atoms over a trajectory.
- Note: The trajectory input for this method should already be centered and
aligned on the atoms of interest. By default, the returned histogram has origin in its central bin.
- Basic usage:
ana = VolumeMapper(cms_model, ‘mol.num 1’) results = analyze(tr, ana)
- __init__(cms_model, asl=None, aids=None, spacing=(1.0, 1.0, 1.0), length=(10.0, 10.0, 10.0), center=(0.0, 0.0, 0.0), normalize=True)¶
- Parameters
asl (
str) – The ASL selection for which volumetric density map will be constructed
- reduce(pos_t, *_, **__)¶
- schrodinger.application.desmond.packages.analysis.progress_report_frame_number(i, *_)¶
- schrodinger.application.desmond.packages.analysis.analyze(tr, analyzer, *arg, **kwarg)¶
Do analyses on the given trajectory
tr, and return the results. The analyses are specified as one or more positional arguements. Each analyzer should satisfy the interface requirements (see the docstring ofGeomCalc.addAnalyzer).- Parameters
tr (
listoftraj.Frame) – The simulation trajectory to analyzearg – A list of analyzer objects
kwarg["progress_feedback"] (callable, e.g., func(i, fr, tr), where
iis the current frame index,frthe current frame,trthe whole trajectory.) – This function will be called at start of analysis on the current frame. This function is intended to report the progress of the analysis.
- Return type
list- Returns
For a single analyzer, this function will return a list of analysis results, and each element in the list corresponds to the result of the corresponding frame. For multiple analyzers, this function will return a list of lists, and each element is a list of results of the corresponding analyzer. If an analyzer has a
reducemethod, the reduce method will be called, and its result will be returned.
- schrodinger.application.desmond.packages.analysis.rmsd_matrix(obj, tr, rmsd_gids, fit_gids=None)¶
Return an NxN matrix where N is the number of frames in the trajectory
trand the (i, j)’th entry is the RMSD between frame i and frame j. The frame-wise RMSD values are calculated for atoms specified byrmsd_gids. Iffit_gidsis provided, the corresponding atoms are used to superimpose the two frames first.- Parameters
obj (
msys.Systemorcms.Cms.glued_topology) – connection for trjactory centeringtr (
listoftraj.Frameobjects) – Trajectoryrmsd_gids (
listofint) – GIDs of atoms for which to calculate the RMSDfit_gids (
Noneor alistofint) – GIDs of atoms on which to we align the structures. IfNone, no alignment is performed.
- Return type
numpy.ndarrayoffloat- Returns
A symmetric square matrix of RMSDs
- schrodinger.application.desmond.packages.analysis.cluster(affinity_matrix) Tuple[List[int], List[int]]¶
Use the affinity propagation method to cluster the input matrix, gradually increasing the damping factor until the algorithm converges.
The maximum number of iterations is currently hard-coded to 400. If the damping factor reaches 1.0 (which is not a valid value), the function will return empty lists for the centers and labels.
- Parameters
affinity_matrix (
numpy.ndarrayoffloat) – A square matrix of affinity/similarity values- Returns
The first list is the sample indices of the clusters’ centers, the second list is a cluster label of all samples.
- class schrodinger.application.desmond.packages.analysis.Rdf(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerCalculate radial distribution function (RDF, also known as g(r)) for atom or atom group selections.
In general, we need two groups of positions. The first group are the reference positions, whereas the second the distance group. The reference and distance groups can be the same.
The ‘pos_type’ parameter determines the types of positions used as reference and distance groups. When ‘pos_type’ is set to “atom”, each atom is considered individually and the ‘group_type’ parameters are ignored, meaning no grouping is performed.
However, when ‘pos_type’ is set to values other than “atom”, such as “com”, “coc”, or “centroid”, the atoms can be grouped into larger units like molecules or residues based on the ‘group_type’ parameters. In these cases, the RDF is calculated using these larger group units instead of individual atoms.
For example, if we want to calculate the RDF of the distances of water hydrogen atoms with respect to water oxygen atoms, and ‘pos_type’ is set to “atom”, each atom is considered individually. Alternatively, if ‘pos_type’ is “com” and ‘group_type’ is “MOLECULE”, atoms are grouped by their molecular identity and the center of mass of each molecule is used, thus resulting in RDF of water molecules with respect to water molecules.
- __init__(msys_model, cms_model, asl0, asl1=None, pos_type0='atom', pos_type1='atom', dr=0.1, rmax=12.0, group_type0=GroupType.MOLECULE, group_type1=GroupType.MOLECULE)¶
- Parameters
asl0 (
str) – Atom selection for the reference groupasl1 (
strorNone) – Atom selection for the distance group. If it’sNone, it will default toasl0.pos_type0 (
str) – Type of positions of the reference group: “atom” : Use atom’s position directly “com” : Use molecular center of mass “coc” : Use molecular center of charge “centroid”: Use molecular centroidpos_type1 (
str) – Type of positions of the distance group. Values are the same as those ofpos_type0dr (
float) – Bin width in the unit of Angstromsrmax (
float) – Maximum distance in the unit in Angstroms. The RDF will be calculated untilrmax.group_type0 (
GroupType) – Method to use to group atoms inasl0selection. Only used whenpos_type0is not “atom”.group_type1 (
GroupType) – Method to use to group atoms inasl1selection. Only used whenpos_type1is not “atom”.
- reduce(*_, **__)¶
Aggregates the frame-based results (histograms) and returns the final RDF results.
- Return type
(list, list)- Returns
Returns the RDF (the first list), and the integral (the second list).
- bins()¶
- class schrodinger.application.desmond.packages.analysis.ProtProtPiInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisProtein-protein Pi interaction finder. The result has the structure of [{ ‘pi-pi’: [(an atom from ring1, an atom from ring2) for each interaction], ‘pi-cat’: [(an atom from ring, an atom from cation) for each interaction] } for each frame]
- __init__(msys_model, cms_model, asl)¶
- Parameters
asl (
str) – ASL expression to select protein atoms
- class schrodinger.application.desmond.packages.analysis.ProtProtHbondInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerProtein-protein hydrogen bond finder.
The result has the structure of [{ ‘hbond_bb’: [(donor AID, acceptor AID) for each interaction], ‘hbond_ss’: [(donor AID, acceptor AID) for each interaction], ‘hbond_sb’: [(donor AID, acceptor AID) for each interaction], ‘hbond_bs’: [(donor AID, acceptor AID) for each interaction] } for each frame]
Here ‘b’ denotes backbone and ‘s’ sidechain.
- __init__(msys_model, cms_model, asl)¶
- class schrodinger.application.desmond.packages.analysis.ProtProtInter(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CompositeAnalyzerProtein-protein interactions.
The result has the structure of:
[{ 'pi-pi': [(an atom from ring1, an atom from ring2) for each interaction], 'pi-cat': [(an atom from ring, an atom from cation) for each interaction], 'salt-bridge': [(anion atom AID, cation atom AID) for each bridge], 'hbond_bb': [(donor AID, acceptor AID) for each interaction], 'hbond_ss': [(donor AID, acceptor AID) for each interaction], 'hbond_sb': [(donor AID, acceptor AID) for each interaction], 'hbond_bs': [(donor AID, acceptor AID) for each interaction] } for each frame]
Here ‘b’ denotes backbone and ‘s’ sidechain. For the same frame, results are unique up to residue level, e.g., even if there are multiple salt-bridges between residue A and B, only 1 is recorded.
- __init__(msys_model, cms_model, asl)¶
- Parameters
asl (
str) – ASL expression to select protein atoms
- reduce(results, *_, **__)¶
- Parameters
results (
listofdict. Its length is the number of frames.) – interactions of all frames
:rtype :
dict:return: counts of the various interactions over the whole trajectory
- class schrodinger.application.desmond.packages.analysis.AreaPerLipid(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate Area-Per-Lipid in from pure lipid bilayer simulation (no protein). This analyzer assumes the bilayer is symmetric – number of lipids in upper and lower leaflets are the same. To calculate area-per-lipid, get X-Y area and divides by number of lipids/2
- __init__(msys_model, cms_model, membrane_asl: str = 'membrane')¶
- Parameters
membrane_asl (
asl) – selection to center the system along the Z-axis
- class schrodinger.application.desmond.packages.analysis.MembraneDensityProfile(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate Density Profile along the Z axis. The results are returned in g/cm^3.
- AMU_TO_GRAM = 1.66¶
- __init__(msys_model, cms_model, membrane_asl='membrane', density_sel_asl='lipids', slice_height=1.0, z_min=- 40, z_max=40)¶
- Parameters
membrane_asl (
asl) – selection to center the system along the Z-axisdensity_sel_asl (
asl) – selection for density calculationslice_height (
float) – the height of the slices to usez_min (int) – the lower limit for which density will be calculated
z_max (int) – the upper limit for which density will be calculated
- reduce(results, *_, **__)¶
Return (mean, std) density along the Z-axis
- class schrodinger.application.desmond.packages.analysis.MembraneThickness(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseCalculate thickness of the membrane bilayer. For phospholipids a phosphate atom is often used as a proxy for each leaflet. The system is first centered along the Z-axis, and the distance betweent the <phosphates> in each leaflet is calculated.
- __init__(msys_model, cms_model, membrane_asl='membrane', proxy_asl='atom.ele P')¶
- Parameters
membrane_asl (
asl) – selection to center the system along the Z-axisproxy_asl (
asl) – selection of atom(s) to be used for thickness