schrodinger.application.bioluminate.antibody.antibody_homology_report_writer module¶
- class schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.ReportData(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.models.parameters.CompoundParam
Data needed to generate a report file for one arm of an antibody homology model.
- heavy_source_name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- heavy_sequence: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- light_source_name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- light_sequence: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- heavy_template_sequences: List[str]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- light_template_sequences: List[str]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- active_db_paths: List[str]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- common_fr_data: List[str]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- model_sts: List[schrodinger.structure._structure.Structure]¶
A Param to represent lists. Values of this param will have a
mutated
signal that will be emitted whenever any mutation method is called.The constructor optionally takes a
item_class
keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.
- numbering_scheme: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- active_db_pathsChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- active_db_pathsReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- common_fr_dataChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- common_fr_dataReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_sequenceChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_sequenceReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_source_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_source_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_template_sequencesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- heavy_template_sequencesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_sequenceChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_sequenceReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_source_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_source_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_template_sequencesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- light_template_sequencesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- model_stsChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- model_stsReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- numbering_schemeChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- numbering_schemeReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.derive_beginning_res(seq, end_res)¶
For a given sequence and an ending residue (e.g. A:23), determine the starting residue (e.g. A:1). It’s assumed that there are no misalighments or gaps in the sequence. Any “.” characters of the sequence are ignored.
- Parameters
seq (str) – Sequence string, e.g. “AVG.A”
end_res (str) – Ending residue string, e.g. “A:23”
Returns “” if the given residue string is misformatted or contains insertion codes.
- schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.derive_ending_res(seq, beg_res)¶
For a given sequence and a starting residue (e.g. A:23), determine the ending residue (e.g. A:28). It’s assumed that there are no misalighments or gaps in the sequence. Any “.” characters of the sequence are ignored.
- Parameters
seq (str) – Sequence string, e.g. “AVG.A”
end_res (str) – Starting residue string, e.g. “A:23”
Returns “” if the given residue string is misformatted or contains insertion codes.
- class schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.ReportWriter¶
Bases:
object
Class for writing report file at the end of the generate loops operation. See the write() method for usage.
- getSeqAnnotations(sequence)¶
Given a sequence string, return a string of loop annotations. The output string will be the same length, and will have “@” for the H1/L1 loop, “#” for the H2/L2, and “&” for H3/L3.
- breakSeqIntoLoops(sequence)¶
Given a sequence string, return a dict of loop sequences. Keys are: L1, L2, L3, H1, H2, H3; values are sequences for them.
- formatLoopTable(loops_table)¶
Given a list of loop infos, each consisting the loop name, query and template sequences, and beginning/ending residues (for FR loops), return a nicely formatted table text string.
- write(report_file: str, arm1_report_data: schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.ReportData, arm2_report_data: Optional[schrodinger.application.bioluminate.antibody.antibody_homology_report_writer.ReportData] = None)¶
Write the report based on the given parameters, and save it to the <report_file> file path.
- Parameters
report_file – The name of the report file to write
arm1_report_data – Data relating to the first arm that was modeled
arm2_report_data – Data relating to the second arm that was modeled. Only needed if it’s different from the first arm (i.e. in bispecific modeling)