schrodinger.application.matsci.anharmonic module¶
Utilities for the anharmonic corrections workflow.
Copyright Schrodinger, LLC. All rights reserved.
- class schrodinger.application.matsci.anharmonic.SeqData(start, step, n_points)¶
- Bases: - tuple- __contains__(key, /)¶
- Return key in self. 
 - __len__()¶
- Return len(self). 
 - count(value, /)¶
- Return number of occurrences of value. 
 - index(value, start=0, stop=9223372036854775807, /)¶
- Return first index of value. - Raises ValueError if the value is not present. 
 - n_points¶
- Alias for field number 2 
 - start¶
- Alias for field number 0 
 - step¶
- Alias for field number 1 
 
- schrodinger.application.matsci.anharmonic.get_seq_data(options, flag)[source]¶
- Return a sequence data for the given flag. - Parameters
- options (argparse.Namespace) – the options 
- flag (str) – the flag 
 
- Return type
- Returns
- the sequence data 
 
- schrodinger.application.matsci.anharmonic.evaluate_f(x, deriv_idx, coeffs)[source]¶
- Evaluate the nth derivative of a polynomial described by the given coefficients. - Parameters
- x (float) – the point at which to evaluate 
- deriv_idx (int) – indicates what derivative of the polynomial to evaluate, 0 is the polynomial itself, 1 is the first derivative, etc. 
- coeffs (tuple) – the coefficents of the polynomial, for a mth order polynomial must be of lenth m + 1 
 
- Return type
- float 
- Returns
- the evaluated value 
 
- schrodinger.application.matsci.anharmonic.angular_freq_to_freq(angular_freq)[source]¶
- Convert the given angular frequency to frequency. - Parameters
- angular_freq (float) – the angular frequency in s**-1 
- Return type
- float 
- Returns
- the frequency in cm**-1 
 
- schrodinger.application.matsci.anharmonic.freq_to_angular_freq(freq)[source]¶
- Convert the given frequency to angular frequency. - Parameters
- freq (float) – the frequency in cm**-1 
- Return type
- float 
- Returns
- the angular frequency in s**-1 
 
- schrodinger.application.matsci.anharmonic.plotter(x_min, x_max, x_e_min, x_e_max, x_step, y_func, file_name, title, y_label, x_values=None)[source]¶
- Plot the given function. - Parameters
- x_min (float) – the minimum value on the x-axis 
- x_max (float) – the maximum value on the x-axis 
- x_e_min (float) – the minimum value on the extended x-axis 
- x_e_max (float) – the maximum value on the extended x-axis 
- x_step (float) – the step size to use on the x-axis 
- y_func (function) – the function to use to obtain y-axis values 
- file_name (str) – the file name used to write the plot image 
- title (str) – the title for the plot image 
- y_label (str) – the y-axis label for the plot image 
- x_values (list or None) – if not None then contains x values for points to show in the plot 
 
 
- schrodinger.application.matsci.anharmonic.get_normal_modes(jagout, max_i_freq=- inf)[source]¶
- Return the normal modes from the given JaguarOutput. - Parameters
- jagout (schrodinger.application.jaguar.output.JaguarOutput) – the Jaguar output object 
- max_i_freq (float) – tolerate small imaginary frequencies less than this value in wavenumbers (cm^-1) 
 
- Return type
- list 
- Returns
- contains pair tuples, (normal mode index (1-based), schrodinger.application.jaguar.results.NormalMode) 
 
- schrodinger.application.matsci.anharmonic.check_imaginary_frequencies(jag_out, jag_in, max_i_freq=0)[source]¶
- Check imaginary frequencies. - Parameters
- jag_out (JaguarOutput) – the Jaguar output object 
- jag_in (JaguarInput) – the Jaguar input object 
- max_i_freq (float) – tolerate small imaginary frequencies less than this value in wavenumbers (cm^-1) 
 
- Raises
- AnharmonicException – if there is an issue 
 
- schrodinger.application.matsci.anharmonic.get_st_jaguar_output(jagout_file_name, allow_new_dummies=False)[source]¶
- Return a structure from the given Jaguar output file. - Parameters
- jagout_file_name (str) – the name of a Jaguar output file 
- allow_new_dummies (bool) – whether to allow mmjag’s lewis structure build to possibly add new dummy atoms 
 
- Return type
- Returns
- the structure 
 
- exception schrodinger.application.matsci.anharmonic.AnharmonicException[source]¶
- Bases: - Exception- __init__(*args, **kwargs)¶
 - args¶
 - with_traceback()¶
- Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. 
 
- class schrodinger.application.matsci.anharmonic.AnharmonicPotentials(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)[source]¶
- Bases: - object- __init__(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)[source]¶
- Create an instance. - Parameters
- st ( - schrodinger.structure.Structureor None) – a structure for which to calculate anharmonic potentials or None if using Jaguar frequency files directly
- jagout_file_name (str or None) – the name of a Jaguar frequency output file for which to calculate anharmonic potentials or None if using an input structure 
- jagrin_file_name (str or None) – the name of a Jaguar freqency restart input file for which to calculate anharmonic potentials or None if using an input structure 
- max_freq (float) – anharmonic potentials are created for normal modes with harmonic frequencies less than this value in wavenumbers (cm^-1) 
- factor_data (SeqData or None) – unitless factor data for factors that multiply a normal mode displacement, if None then the defaults are used, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- jaguar_kwargs (dict) – Jaguar &gen section keyword arguments, used only if the anharmonic potentials are being calculated from an input structure rather than directly from Jaguar frequency files 
- temperature_data (SeqData or None) – temperature data in K, if None then the defaults are used 
- pressure_data (SeqData or None) – pressure data in atm, if None then the defaults are used 
- max_i_freq (float) – tolerate small imaginary frequencies less than this value in wavenumbers (cm^-1) 
- plot (bool) – if True then return plots of the potentials and particle densities 
- process_no_anharmonicities (bool) – if True then do not exit with an error if the given max_freq results in zero normal modes to be treated anharmonically 
- tpp (int) – the threads-per-process to use for running Jaguar calculations 
- logger (logging.Logger or None) – output logger or None if there isn’t one 
- robust (bool) – If True, use the robust Jaguar driver to run Jaguar jobs. If False, use Jaguar directly. 
 
 
 - getJaguarJob(base_name, input_name)[source]¶
- Get the job to run Jaguar with the given job base name and input name. The job will run either Jaguar directly or the robust Jaguar driver based on the current robust setting. - Parameters
- base_name (str) – The base name of this job 
- input_name (str) – The name of the input file 
 
- Return type
- jobutils.RobustSubmissionJob
- Returns
- The job (suitable for JobDJ that will run Jaguar 
 
 - runFrequencyJob()[source]¶
- Run a Jaguar frequency job on the input structure. - Raises
- AnharmonicException – if there is an issue 
 
 - static getFactors(factor_data)[source]¶
- Return the factors. - Parameters
- factor_data (SeqData) – unitless factor data for factors that multiply a normal mode displacement, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- Return type
- tuple 
- Returns
- the factors 
 
 - getExtendedFactors()[source]¶
- Return the extended factors. - Return type
- tuple 
- Returns
- the extended factors 
 
 - runSinglePointJobs()[source]¶
- Run the Jaguar single point jobs from which to calculate the anharmonic potentials. - Raises
- AnharmonicException – if there is an issue 
 
 - collectEnergies()[source]¶
- Update self.potentials with the Jaguar single point energies. - Raises
- AnharmonicException – if there is an issue 
 
 - getEnergies(idx)[source]¶
- Return the energies (Hartree) used to build the potential for the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- list 
- Returns
- the energies 
 
 - collectFits()[source]¶
- Update self.potentials with the anharmonic fit data. - Raises
- AnharmonicException – if there is an issue 
 
 - evaluate_f(idx, factor, deriv_idx, convert_to_si=False)[source]¶
- Evaluate the nth derivative of the anharmonic potential for the given normal mode index. - Parameters
- idx (int) – the normal mode index, 1-based 
- factor (float) – the point at which to evaluate 
- deriv_idx (int) – indicates what derivative of the polynomial to evaluate, 0 is the polynomial itself, 1 is the first derivative, etc. 
- convert_to_si (bool) – if True convert the returned value from units of H/Ang.**deriv_idx to J/m**deriv_idx 
 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- float 
- Returns
- the evaluated value in units of H/Ang.**deriv_idx or if convert_to_si is True in units of J/m**deriv_idx 
 
 - getReducedMass1(idx)[source]¶
- Return the reduced mass of the given normal mode using the Jaguar definition. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass2(idx)[source]¶
- Return the reduced mass of the given normal mode using the definition in the publications followed in this module. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass(idx)[source]¶
- Return the reduced mass of the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - collectAnharmonicFrequencies()[source]¶
- Update self.potentials with the anharmonic frequencies in wavenumbers (cm^-1). - Raises
- AnharmonicException – if there is an issue 
 
 
- class schrodinger.application.matsci.anharmonic.AnharmonicPartitionFunction(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)[source]¶
- Bases: - schrodinger.application.matsci.anharmonic.AnharmonicPotentials- static getBeta(temperature)[source]¶
- Return beta. - Parameters
- temperature (float) – the temperature in K 
- Return type
- float 
- Returns
- beta in 1/J 
 
 - getClassicalParticleDensity(idx, temperature, factor)[source]¶
- For the given normal mode return the classical particle density evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the classical particle density in 1/Ang. 
 
 - getCorrectionParticleDensity(idx, temperature, factor)[source]¶
- For the given normal mode return the particle density multiplicative correction evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the particle density multiplicative correction (unitless) 
 
 - getParticleDensity(idx, temperature, factor)[source]¶
- For the given normal mode return the particle density evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the particle density in 1/Ang. 
 
 - plotParticleDensity(idx, temperature)[source]¶
- For the given normal mode plot the particle density. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
 
 
 - checkCorrectionParticleDensity(idx, temperature)[source]¶
- For the given normal mode check the particle density multiplicative correction. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
 
- Raises
- AnharmonicException – if there is an issue 
 
 - getAnharmonicVibPartitionFunctions(temperature)[source]¶
- Return the ln of the anharmonic vibrational partition functions. - Parameters
- temperature (float) – the temperature in K 
- Return type
- dict 
- Returns
- keys are normal mode indices, 1-based, values are ln of the anharmonic vibrational partition functions 
 
 - getHarmonicVibPartitionFunctions(temperature)[source]¶
- Return the ln of the harmonic vibrational partition functions. - Parameters
- temperature (float) – the temperature in K 
- Return type
- dict 
- Returns
- keys are normal mode indices, 1-based, values are ln of the harmonic vibrational partition functions 
 
 - static getVibPartitionFunction(lnz_a_vibs, lnz_h_vibs)[source]¶
- Return the ln of the vibrational partition function. - Return type
- float 
- Returns
- the ln of the vibrational partition function 
 
 - logLnQTable(temperature, lnz_a_vibs, lnz_h_vibs)[source]¶
- Log lnQ table. - Parameters
- temperature (float) – the temperature in K 
 
 - __init__(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)¶
- Create an instance. - Parameters
- st ( - schrodinger.structure.Structureor None) – a structure for which to calculate anharmonic potentials or None if using Jaguar frequency files directly
- jagout_file_name (str or None) – the name of a Jaguar frequency output file for which to calculate anharmonic potentials or None if using an input structure 
- jagrin_file_name (str or None) – the name of a Jaguar freqency restart input file for which to calculate anharmonic potentials or None if using an input structure 
- max_freq (float) – anharmonic potentials are created for normal modes with harmonic frequencies less than this value in wavenumbers (cm^-1) 
- factor_data (SeqData or None) – unitless factor data for factors that multiply a normal mode displacement, if None then the defaults are used, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- jaguar_kwargs (dict) – Jaguar &gen section keyword arguments, used only if the anharmonic potentials are being calculated from an input structure rather than directly from Jaguar frequency files 
- temperature_data (SeqData or None) – temperature data in K, if None then the defaults are used 
- pressure_data (SeqData or None) – pressure data in atm, if None then the defaults are used 
- max_i_freq (float) – tolerate small imaginary frequencies less than this value in wavenumbers (cm^-1) 
- plot (bool) – if True then return plots of the potentials and particle densities 
- process_no_anharmonicities (bool) – if True then do not exit with an error if the given max_freq results in zero normal modes to be treated anharmonically 
- tpp (int) – the threads-per-process to use for running Jaguar calculations 
- logger (logging.Logger or None) – output logger or None if there isn’t one 
- robust (bool) – If True, use the robust Jaguar driver to run Jaguar jobs. If False, use Jaguar directly. 
 
 
 - collectAnharmonicFrequencies()¶
- Update self.potentials with the anharmonic frequencies in wavenumbers (cm^-1). - Raises
- AnharmonicException – if there is an issue 
 
 - collectEnergies()¶
- Update self.potentials with the Jaguar single point energies. - Raises
- AnharmonicException – if there is an issue 
 
 - collectFits()¶
- Update self.potentials with the anharmonic fit data. - Raises
- AnharmonicException – if there is an issue 
 
 - evaluate_f(idx, factor, deriv_idx, convert_to_si=False)¶
- Evaluate the nth derivative of the anharmonic potential for the given normal mode index. - Parameters
- idx (int) – the normal mode index, 1-based 
- factor (float) – the point at which to evaluate 
- deriv_idx (int) – indicates what derivative of the polynomial to evaluate, 0 is the polynomial itself, 1 is the first derivative, etc. 
- convert_to_si (bool) – if True convert the returned value from units of H/Ang.**deriv_idx to J/m**deriv_idx 
 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- float 
- Returns
- the evaluated value in units of H/Ang.**deriv_idx or if convert_to_si is True in units of J/m**deriv_idx 
 
 - getEnergies(idx)¶
- Return the energies (Hartree) used to build the potential for the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- list 
- Returns
- the energies 
 
 - getExtendedFactors()¶
- Return the extended factors. - Return type
- tuple 
- Returns
- the extended factors 
 
 - static getFactors(factor_data)¶
- Return the factors. - Parameters
- factor_data (SeqData) – unitless factor data for factors that multiply a normal mode displacement, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- Return type
- tuple 
- Returns
- the factors 
 
 - getJaguarJob(base_name, input_name)¶
- Get the job to run Jaguar with the given job base name and input name. The job will run either Jaguar directly or the robust Jaguar driver based on the current robust setting. - Parameters
- base_name (str) – The base name of this job 
- input_name (str) – The name of the input file 
 
- Return type
- jobutils.RobustSubmissionJob
- Returns
- The job (suitable for JobDJ that will run Jaguar 
 
 - getReducedMass(idx)¶
- Return the reduced mass of the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass1(idx)¶
- Return the reduced mass of the given normal mode using the Jaguar definition. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass2(idx)¶
- Return the reduced mass of the given normal mode using the definition in the publications followed in this module. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - logCoefficientsTable()¶
- Log coefficients table. 
 - logFrequencyTable()¶
- Log frequency table. 
 - plotPotentials()¶
- Plot the potentials. 
 - runFrequencyJob()¶
- Run a Jaguar frequency job on the input structure. - Raises
- AnharmonicException – if there is an issue 
 
 - runSinglePointJobs()¶
- Run the Jaguar single point jobs from which to calculate the anharmonic potentials. - Raises
- AnharmonicException – if there is an issue 
 
 
- class schrodinger.application.matsci.anharmonic.AnharmonicThermochemicalProperties(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)[source]¶
- Bases: - schrodinger.application.matsci.anharmonic.AnharmonicPartitionFunction- getVibrationalTemperature(idx)[source]¶
- Return the vibrational temperature of the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the vibrational temperature in K 
 
 - getInternalEnergy(thermo)[source]¶
- Return the internal energy. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object 
- Return type
- float 
- Returns
- the internal energy in kcal/mol 
 
 - getHeatCapacity(thermo)[source]¶
- Return the heat capacity. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object 
- Return type
- float 
- Returns
- the heat capacity in cal/(mol * K) 
 
 - getEntropy(thermo)[source]¶
- Return the entropy. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object 
- Return type
- float 
- Returns
- the entropy in cal/(mol * K) 
 
 - getEnthalpy(thermo)[source]¶
- Return the enthalpy. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object 
- Return type
- float 
- Returns
- the enthalpy in kcal/mol 
 
 - __init__(st=None, jagout_file_name=None, jagrin_file_name=None, max_freq=300, factor_data=None, jaguar_kwargs={'basis': 'LACVP**', 'dftname': 'B3LYP', 'igeopt': 1, 'molchg': 0, 'multip': 1}, temperature_data=None, pressure_data=None, max_i_freq=0, plot=False, process_no_anharmonicities=False, tpp=1, logger=None, robust=False)¶
- Create an instance. - Parameters
- st ( - schrodinger.structure.Structureor None) – a structure for which to calculate anharmonic potentials or None if using Jaguar frequency files directly
- jagout_file_name (str or None) – the name of a Jaguar frequency output file for which to calculate anharmonic potentials or None if using an input structure 
- jagrin_file_name (str or None) – the name of a Jaguar freqency restart input file for which to calculate anharmonic potentials or None if using an input structure 
- max_freq (float) – anharmonic potentials are created for normal modes with harmonic frequencies less than this value in wavenumbers (cm^-1) 
- factor_data (SeqData or None) – unitless factor data for factors that multiply a normal mode displacement, if None then the defaults are used, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- jaguar_kwargs (dict) – Jaguar &gen section keyword arguments, used only if the anharmonic potentials are being calculated from an input structure rather than directly from Jaguar frequency files 
- temperature_data (SeqData or None) – temperature data in K, if None then the defaults are used 
- pressure_data (SeqData or None) – pressure data in atm, if None then the defaults are used 
- max_i_freq (float) – tolerate small imaginary frequencies less than this value in wavenumbers (cm^-1) 
- plot (bool) – if True then return plots of the potentials and particle densities 
- process_no_anharmonicities (bool) – if True then do not exit with an error if the given max_freq results in zero normal modes to be treated anharmonically 
- tpp (int) – the threads-per-process to use for running Jaguar calculations 
- logger (logging.Logger or None) – output logger or None if there isn’t one 
- robust (bool) – If True, use the robust Jaguar driver to run Jaguar jobs. If False, use Jaguar directly. 
 
 
 - checkCorrectionParticleDensity(idx, temperature)¶
- For the given normal mode check the particle density multiplicative correction. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
 
- Raises
- AnharmonicException – if there is an issue 
 
 - collectAnharmonicFrequencies()¶
- Update self.potentials with the anharmonic frequencies in wavenumbers (cm^-1). - Raises
- AnharmonicException – if there is an issue 
 
 - collectEnergies()¶
- Update self.potentials with the Jaguar single point energies. - Raises
- AnharmonicException – if there is an issue 
 
 - collectFits()¶
- Update self.potentials with the anharmonic fit data. - Raises
- AnharmonicException – if there is an issue 
 
 - evaluate_f(idx, factor, deriv_idx, convert_to_si=False)¶
- Evaluate the nth derivative of the anharmonic potential for the given normal mode index. - Parameters
- idx (int) – the normal mode index, 1-based 
- factor (float) – the point at which to evaluate 
- deriv_idx (int) – indicates what derivative of the polynomial to evaluate, 0 is the polynomial itself, 1 is the first derivative, etc. 
- convert_to_si (bool) – if True convert the returned value from units of H/Ang.**deriv_idx to J/m**deriv_idx 
 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- float 
- Returns
- the evaluated value in units of H/Ang.**deriv_idx or if convert_to_si is True in units of J/m**deriv_idx 
 
 - getAnharmonicVibPartitionFunctions(temperature)¶
- Return the ln of the anharmonic vibrational partition functions. - Parameters
- temperature (float) – the temperature in K 
- Return type
- dict 
- Returns
- keys are normal mode indices, 1-based, values are ln of the anharmonic vibrational partition functions 
 
 - static getBeta(temperature)¶
- Return beta. - Parameters
- temperature (float) – the temperature in K 
- Return type
- float 
- Returns
- beta in 1/J 
 
 - getClassicalParticleDensity(idx, temperature, factor)¶
- For the given normal mode return the classical particle density evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the classical particle density in 1/Ang. 
 
 - getCorrectionParticleDensity(idx, temperature, factor)¶
- For the given normal mode return the particle density multiplicative correction evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the particle density multiplicative correction (unitless) 
 
 - getEnergies(idx)¶
- Return the energies (Hartree) used to build the potential for the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Raises
- AnharmonicException – if there is an issue 
- Return type
- list 
- Returns
- the energies 
 
 - getExtendedFactors()¶
- Return the extended factors. - Return type
- tuple 
- Returns
- the extended factors 
 
 - static getFactors(factor_data)¶
- Return the factors. - Parameters
- factor_data (SeqData) – unitless factor data for factors that multiply a normal mode displacement, the number of points is in the positive direction only, excluding zero and the negative direction, for example using a value of 4 in turn means 2 * 4 + 1 = 9 points total 
- Return type
- tuple 
- Returns
- the factors 
 
 - getGibbsFreeEnergy(thermo)[source]¶
- Return the Gibbs free energy. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object 
- Return type
- float 
- Returns
- the Gibbs free energy in kcal/mol 
 
 - getHarmonicVibPartitionFunctions(temperature)¶
- Return the ln of the harmonic vibrational partition functions. - Parameters
- temperature (float) – the temperature in K 
- Return type
- dict 
- Returns
- keys are normal mode indices, 1-based, values are ln of the harmonic vibrational partition functions 
 
 - getJaguarJob(base_name, input_name)¶
- Get the job to run Jaguar with the given job base name and input name. The job will run either Jaguar directly or the robust Jaguar driver based on the current robust setting. - Parameters
- base_name (str) – The base name of this job 
- input_name (str) – The name of the input file 
 
- Return type
- jobutils.RobustSubmissionJob
- Returns
- The job (suitable for JobDJ that will run Jaguar 
 
 - getParticleDensity(idx, temperature, factor)¶
- For the given normal mode return the particle density evaluated at the given factor. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
- factor (float) – the point at which to evaluate 
 
- Return type
- float 
- Returns
- the particle density in 1/Ang. 
 
 - getReducedMass(idx)¶
- Return the reduced mass of the given normal mode. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass1(idx)¶
- Return the reduced mass of the given normal mode using the Jaguar definition. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - getReducedMass2(idx)¶
- Return the reduced mass of the given normal mode using the definition in the publications followed in this module. - Parameters
- idx (int) – the normal mode index, 1-based 
- Return type
- float 
- Returns
- the reduced mass in kg 
 
 - static getVibPartitionFunction(lnz_a_vibs, lnz_h_vibs)¶
- Return the ln of the vibrational partition function. - Return type
- float 
- Returns
- the ln of the vibrational partition function 
 
 - logCoefficientsTable()¶
- Log coefficients table. 
 - logFrequencyTable()¶
- Log frequency table. 
 - logLnQTable(temperature, lnz_a_vibs, lnz_h_vibs)¶
- Log lnQ table. - Parameters
- temperature (float) – the temperature in K 
 
 - plotParticleDensity(idx, temperature)¶
- For the given normal mode plot the particle density. - Parameters
- idx (int) – the normal mode index, 1-based 
- temperature (float) – the temperature in K 
 
 
 - plotPotentials()¶
- Plot the potentials. 
 - runFrequencyJob()¶
- Run a Jaguar frequency job on the input structure. - Raises
- AnharmonicException – if there is an issue 
 
 - runSinglePointJobs()¶
- Run the Jaguar single point jobs from which to calculate the anharmonic potentials. - Raises
- AnharmonicException – if there is an issue 
 
 - setDivergencies()¶
- Set divergencies. 
 - logPropertyTable(thermo)[source]¶
- Log property table. - Parameters
- thermo (schrodinger.application.jaguar.results.ThermoCollection) – the thermo object