schrodinger.application.matsci.gsas.GSASIImath module¶
# Third-party code. No Schrodinger Copyright.
GSASIImath: computation module¶
Routines for least-squares minimization and other stuff
- schrodinger.application.matsci.gsas.GSASIImath.sind(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.cosd(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.tand(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.asind(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.acosd(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.atand(x)¶
- schrodinger.application.matsci.gsas.GSASIImath.atan2d(y, x)¶
- schrodinger.application.matsci.gsas.GSASIImath.pinv(a, rcond=1e-15)¶
Compute the (Moore-Penrose) pseudo-inverse of a matrix. Modified from numpy.linalg.pinv; assumes a is Hessian & returns no. zeros found Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.
- Parameters:
a (array) – (M, M) array_like - here assumed to be LS Hessian Matrix to be pseudo-inverted.
rcond (float) – Cutoff for small singular values. Singular values smaller (in modulus) than
rcond
* largest_singular_value (again, in modulus) are set to zero.
- Returns:
B : (M, M) ndarray The pseudo-inverse of
a
- Raises: LinAlgError
If the SVD computation does not converge.
- Notes:
The pseudo-inverse of a matrix A, denoted A^+, is defined as: “the matrix that ‘solves’ [the least-squares problem] Ax = b,” i.e., if \bar{x} is said solution, then A^+ is that matrix such that \bar{x} = A^+b.
It can be shown that if Q_1 \Sigma Q_2^T = A is the singular value decomposition of A, then A^+ = Q_2 \Sigma^+ Q_1^T, where Q_{1,2} are orthogonal matrices, \Sigma is a diagonal matrix consisting of A’s so-called singular values, (followed, typically, by zeros), and then \Sigma^+ is simply the diagonal matrix consisting of the reciprocals of A’s singular values (again, followed by zeros). [1]
References: .. [1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142.
- schrodinger.application.matsci.gsas.GSASIImath.HessianLSQ(func, x0, Hess, args=(), ftol=1.49012e-08, xtol=1e-06, maxcyc=0, lamda=-3, Print=False, refPlotUpdate=None)¶
Minimize the sum of squares of a function (f) evaluated on a series of values (y): sum_{y=0}^{N_{obs}} f(y,{args}) where x = arg min(sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))
- Parameters:
func (function) – callable method or function should take at least one (possibly length N vector) argument and returns M floating point numbers.
x0 (np.ndarray) – The starting estimate for the minimization of length N
Hess (function) – callable method or function A required function or method to compute the weighted vector and Hessian for func. It must be a symmetric NxN array
args (tuple) – Any extra arguments to func are placed in this tuple.
ftol (float) – Relative error desired in the sum of squares.
xtol (float) – Relative tolerance of zeros in the SVD solution in nl.pinv.
maxcyc (int) – The maximum number of cycles of refinement to execute, if -1 refine until other limits are met (ftol, xtol)
lamda (int) – initial Marquardt lambda=10**lamda
Print (bool) – True for printing results (residuals & times) by cycle
- Returns:
(x,cov_x,infodict) where
x : ndarray The solution (or the result of the last iteration for an unsuccessful call).
cov_x : ndarray Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around the solution.
None
if a singular matrix encountered (indicates very flat curvature in some direction). This matrix must be multiplied by the residual standard deviation to get the covariance of the parameter estimates – see curve_fit.infodict : dict a dictionary of optional outputs with the keys:
’fvec’ : the function evaluated at the output
’num cyc’:
’nfev’:
’lamMax’:
’psing’:
’SVD0’:
- schrodinger.application.matsci.gsas.GSASIImath.HessianSVD(func, x0, Hess, args=(), ftol=1.49012e-08, xtol=1e-06, maxcyc=0, lamda=-3, Print=False, refPlotUpdate=None)¶
Minimize the sum of squares of a function (f) evaluated on a series of values (y): sum_{y=0}^{N_{obs}} f(y,{args}) where x = arg min(sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))
- Parameters:
func (function) – callable method or function should take at least one (possibly length N vector) argument and returns M floating point numbers.
x0 (np.ndarray) – The starting estimate for the minimization of length N
Hess (function) – callable method or function A required function or method to compute the weighted vector and Hessian for func. It must be a symmetric NxN array
args (tuple) – Any extra arguments to func are placed in this tuple.
ftol (float) – Relative error desired in the sum of squares.
xtol (float) – Relative tolerance of zeros in the SVD solution in nl.pinv.
maxcyc (int) – The maximum number of cycles of refinement to execute, if -1 refine until other limits are met (ftol, xtol)
Print (bool) – True for printing results (residuals & times) by cycle
- Returns:
(x,cov_x,infodict) where
x : ndarray The solution (or the result of the last iteration for an unsuccessful call).
cov_x : ndarray Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around the solution.
None
if a singular matrix encountered (indicates very flat curvature in some direction). This matrix must be multiplied by the residual standard deviation to get the covariance of the parameter estimates – see curve_fit.infodict : dict a dictionary of optional outputs with the keys:
’fvec’ : the function evaluated at the output
’num cyc’:
’nfev’:
’lamMax’:0.
’psing’:
’SVD0’:
- schrodinger.application.matsci.gsas.GSASIImath.getVCov(varyNames, varyList, covMatrix)¶
obtain variance-covariance terms for a set of variables. NB: the varyList and covMatrix were saved by the last least squares refinement so they must match.
- Parameters:
varyNames (list) – variable names to find v-cov matric for
varyList (list) – full list of all variables in v-cov matrix
covMatrix (nparray) – full variance-covariance matrix from the last least squares refinement
- Returns:
nparray vcov: variance-covariance matrix for the variables given in varyNames
- schrodinger.application.matsci.gsas.GSASIImath.FindMolecule(ind, generalData, atomData)¶
- schrodinger.application.matsci.gsas.GSASIImath.FindAtomIndexByIDs(atomData, loc, IDs, Draw=True)¶
finds the set of atom array indices for a list of atom IDs. Will search either the Atom table or the drawAtom table.
- Parameters:
atomData (list) – Atom or drawAtom table containting coordinates, etc.
loc (int) – location of atom id in atomData record
IDs (list) – atom IDs to be found
Draw (bool) – True if drawAtom table to be searched; False if Atom table is searched
- Returns:
list indx: atom (or drawAtom) indices
- schrodinger.application.matsci.gsas.GSASIImath.FillAtomLookUp(atomData, indx)¶
create a dictionary of atom indexes with atom IDs as keys
- Parameters:
atomData (list) – Atom table to be used
- Returns:
dict atomLookUp: dictionary of atom indexes with atom IDs as keys
- schrodinger.application.matsci.gsas.GSASIImath.GetAtomsById(atomData, atomLookUp, IdList)¶
gets a list of atoms from Atom table that match a set of atom IDs
- Parameters:
atomData (list) – Atom table to be used
atomLookUp (dict) – dictionary of atom indexes with atom IDs as keys
IdList (list) – atom IDs to be found
- Returns:
list atoms: list of atoms found
- schrodinger.application.matsci.gsas.GSASIImath.GetAtomItemsById(atomData, atomLookUp, IdList, itemLoc, numItems=1)¶
gets atom parameters for atoms using atom IDs
- Parameters:
atomData (list) – Atom table to be used
atomLookUp (dict) – dictionary of atom indexes with atom IDs as keys
IdList (list) – atom IDs to be found
itemLoc (int) – pointer to desired 1st item in an atom table entry
numItems (int) – number of items to be retrieved
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetAtomCoordsByID(pId, parmDict, AtLookup, indx)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetAtomFracByID(pId, parmDict, AtLookup, indx)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.ApplySeqData(data, seqData)¶
Applies result from seq. refinement to drawing atom positions & Uijs
- schrodinger.application.matsci.gsas.GSASIImath.FindNeighbors(phase, FrstName, AtNames, notName='')¶
- schrodinger.application.matsci.gsas.GSASIImath.FindAllNeighbors(phase, FrstName, AtNames, notName='')¶
- schrodinger.application.matsci.gsas.GSASIImath.calcBond(A, Ax, Bx, MTCU)¶
- schrodinger.application.matsci.gsas.GSASIImath.AddHydrogens(AtLookUp, General, Atoms, AddHydId)¶
- schrodinger.application.matsci.gsas.GSASIImath.TLS2Uij(xyz, g, Amat, rbObj)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.AtomTLS2UIJ(atomData, atPtrs, Amat, rbObj)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetXYZDist(xyz, XYZ, Amat)¶
- gets distance from position xyz to all XYZ, xyz & XYZ are np.array
and are in crystal coordinates; Amat is crystal to Cart matrix
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getAtomXYZ(atoms, cx)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRBTransMat(X, Y)¶
Get transformation for Cartesian axes given 2 vectors X will be parallel to new X-axis; X cross Y will be new Z-axis & (X cross Y) cross Y will be new Y-axis Useful for rigid body axes definintion
- Parameters:
X (array) – normalized vector
Y (array) – normalized vector
- Returns:
array M: transformation matrix
use as XYZ’ = np.inner(M,XYZ) where XYZ are Cartesian
- schrodinger.application.matsci.gsas.GSASIImath.RotateRBXYZ(Bmat, Cart, oriQ)¶
rotate & transform cartesian coordinates to crystallographic ones no translation applied. To be used for numerical derivatives
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.UpdateRBXYZ(Bmat, RBObj, RBData, RBType)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.UpdateMCSAxyz(Bmat, MCSA)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.SetMolCent(model, RBData)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.UpdateRBUIJ(Bmat, Cart, RBObj)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetSHCoeff(pId, parmDict, SHkeys)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getMass(generalData)¶
Computes mass of unit cell contents
- Parameters:
generalData (dict) – The General dictionary in Phase
- Returns:
float mass: Crystal unit cell mass in AMU.
- schrodinger.application.matsci.gsas.GSASIImath.getDensity(generalData)¶
calculate crystal structure density
- Parameters:
generalData (dict) – The General dictionary in Phase
- Returns:
float density: crystal density in gm/cm^3
- schrodinger.application.matsci.gsas.GSASIImath.getWave(Parms)¶
returns wavelength from Instrument parameters dictionary
- Parameters:
Parms (dict) – Instrument parameters; must contain: Lam: single wavelength or Lam1: Ka1 radiation wavelength
- Returns:
float wave: wavelength
- schrodinger.application.matsci.gsas.GSASIImath.getMeanWave(Parms)¶
returns mean wavelength from Instrument parameters dictionary
- Parameters:
Parms (dict) – Instrument parameters; must contain: Lam: single wavelength or Lam1,Lam2: Ka1,Ka2 radiation wavelength I(L2)/I(L1): Ka2/Ka1 ratio
- Returns:
float wave: mean wavelength
- schrodinger.application.matsci.gsas.GSASIImath.El2Mass(Elements)¶
compute molecular weight from Elements
- Parameters:
Elements (dict) – elements in molecular formula; each must contain Num: number of atoms in formula Mass: at. wt.
- Returns:
float mass: molecular weight.
- schrodinger.application.matsci.gsas.GSASIImath.Den2Vol(Elements, density)¶
converts density to molecular volume
- Parameters:
Elements (dict) – elements in molecular formula; each must contain Num: number of atoms in formula Mass: at. wt.
density (float) – material density in gm/cm^3
- Returns:
float volume: molecular volume in A^3
- schrodinger.application.matsci.gsas.GSASIImath.Vol2Den(Elements, volume)¶
converts volume to density
- Parameters:
Elements (dict) – elements in molecular formula; each must contain Num: number of atoms in formula Mass: at. wt.
volume (float) – molecular volume in A^3
- Returns:
float density: material density in gm/cm^3
- schrodinger.application.matsci.gsas.GSASIImath.El2EstVol(Elements)¶
Estimate volume from molecular formula; assumes atom volume = 10A^3
- Parameters:
Elements (dict) – elements in molecular formula; each must contain Num: number of atoms in formula
- Returns:
float volume: estimate of molecular volume in A^3
- schrodinger.application.matsci.gsas.GSASIImath.XScattDen(Elements, vol, wave=0.0)¶
Estimate X-ray scattering density from molecular formula & volume; ignores valence, but includes anomalous effects
- Parameters:
Elements (dict) – elements in molecular formula; each element must contain Num: number of atoms in formula Z: atomic number
vol (float) – molecular volume in A^3
wave (float) – optional wavelength in A
- Returns:
float rho: scattering density in 10^10cm^-2; if wave > 0 the includes f’ contribution
- Returns:
float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0
- Returns:
float fpp: if wave>0 f” in 10^10cm^-2; otherwise 0
- schrodinger.application.matsci.gsas.GSASIImath.NCScattDen(Elements, vol, wave=0.0)¶
Estimate neutron scattering density from molecular formula & volume; ignores valence, but includes anomalous effects
- Parameters:
Elements (dict) – elements in molecular formula; each element must contain Num: number of atoms in formula Z: atomic number
vol (float) – molecular volume in A^3
wave (float) – optional wavelength in A
- Returns:
float rho: scattering density in 10^10cm^-2; if wave > 0 the includes f’ contribution
- Returns:
float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0
- Returns:
float fpp: if wave>0 f” in 10^10cm^-2; otherwise 0
- schrodinger.application.matsci.gsas.GSASIImath.wavekE(wavekE)¶
Convert wavelength to energy & vise versa
:param float waveKe:wavelength in A or energy in kE
:returns float waveKe:the other one
- schrodinger.application.matsci.gsas.GSASIImath.XAnomAbs(Elements, wave)¶
- schrodinger.application.matsci.gsas.GSASIImath.makeWaves(waveTypes, FSSdata, XSSdata, USSdata, MSSdata, Mast)¶
waveTypes: array nAtoms: ‘Fourier’,’ZigZag’ or ‘Block’ FSSdata: array 2 x atoms x waves (sin,cos terms) XSSdata: array 2x3 x atoms X waves (sin,cos terms) USSdata: array 2x6 x atoms X waves (sin,cos terms) MSSdata: array 2x3 x atoms X waves (sin,cos terms)
Mast: array orthogonalization matrix for Uij
- schrodinger.application.matsci.gsas.GSASIImath.MagMod(glTau, XYZ, modQ, MSSdata, SGData, SSGData)¶
this needs to make magnetic moment modulations & magnitudes as fxn of gTau points
- schrodinger.application.matsci.gsas.GSASIImath.Modulation(H, HP, nWaves, Fmod, Xmod, Umod, glTau, glWt)¶
H: array nRefBlk x ops X hklt HP: array nRefBlk x ops X hklt proj to hkl nWaves: list number of waves for frac, pos, uij & mag Fmod: array 2 x atoms x waves (sin,cos terms) Xmod: array atoms X 3 X ngl Umod: array atoms x 3x3 x ngl glTau,glWt: arrays Gauss-Lorentzian pos & wts
- schrodinger.application.matsci.gsas.GSASIImath.ModulationTw(H, HP, nWaves, Fmod, Xmod, Umod, glTau, glWt)¶
H: array nRefBlk x tw x ops X hklt HP: array nRefBlk x tw x ops X hklt proj to hkl Fmod: array 2 x atoms x waves (sin,cos terms) Xmod: array atoms X ngl X 3 Umod: array atoms x ngl x 3x3 glTau,glWt: arrays Gauss-Lorentzian pos & wts
- schrodinger.application.matsci.gsas.GSASIImath.makeWavesDerv(ngl, waveTypes, FSSdata, XSSdata, USSdata, Mast)¶
Only for Fourier waves for fraction, position & adp (probably not used for magnetism) FSSdata: array 2 x atoms x waves (sin,cos terms) XSSdata: array 2x3 x atoms X waves (sin,cos terms) USSdata: array 2x6 x atoms X waves (sin,cos terms) Mast: array orthogonalization matrix for Uij
- schrodinger.application.matsci.gsas.GSASIImath.ModulationDerv(H, HP, Hij, nWaves, waveShapes, Fmod, Xmod, UmodAB, SCtauF, SCtauX, SCtauU, glTau, glWt)¶
Compute Fourier modulation derivatives H: array ops X hklt proj to hkl HP: array ops X hklt proj to hkl Hij: array 2pi^2[a*^2h^2 b*^2k^2 c*^2l^2 a*b*hk a*c*hl b*c*kl] of projected hklm to hkl space
- schrodinger.application.matsci.gsas.GSASIImath.posFourier(tau, psin, pcos)¶
- schrodinger.application.matsci.gsas.GSASIImath.posZigZag(T, Tmm, Xmax)¶
- schrodinger.application.matsci.gsas.GSASIImath.posBlock(T, Tmm, Xmax)¶
- schrodinger.application.matsci.gsas.GSASIImath.fracCrenel(tau, Toff, Twid)¶
- schrodinger.application.matsci.gsas.GSASIImath.fracFourier(tau, fsin, fcos)¶
- schrodinger.application.matsci.gsas.GSASIImath.ApplyModulation(data, tau)¶
Applies modulation to drawing atom positions & Uijs for given tau
- schrodinger.application.matsci.gsas.GSASIImath.gaulegf(a, b, n)¶
- schrodinger.application.matsci.gsas.GSASIImath.BessJn(nmax, x)¶
compute Bessel function J(n,x) from scipy routine & recurrance relation returns sequence of J(n,x) for n in range [-nmax…0…nmax]
- Parameters:
nmax (integer) – maximul order for Jn(x)
x (float) – argument for Jn(x)
- Returns numpy array:
[J(-nmax,x)…J(0,x)…J(nmax,x)]
- schrodinger.application.matsci.gsas.GSASIImath.BessIn(nmax, x)¶
compute modified Bessel function I(n,x) from scipy routines & recurrance relation returns sequence of I(n,x) for n in range [-nmax…0…nmax]
- Parameters:
nmax (integer) – maximul order for In(x)
x (float) – argument for In(x)
- Returns numpy array:
[I(-nmax,x)…I(0,x)…I(nmax,x)]
- schrodinger.application.matsci.gsas.GSASIImath.CalcDist(distance_dict, distance_atoms, parmDict)¶
- schrodinger.application.matsci.gsas.GSASIImath.CalcDistDeriv(distance_dict, distance_atoms, parmDict)¶
- schrodinger.application.matsci.gsas.GSASIImath.CalcAngle(angle_dict, angle_atoms, parmDict)¶
- schrodinger.application.matsci.gsas.GSASIImath.CalcAngleDeriv(angle_dict, angle_atoms, parmDict)¶
- schrodinger.application.matsci.gsas.GSASIImath.getSyXYZ(XYZ, ops, SGData)¶
default doc
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestDist(XYZ, Amat)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestDeriv(Func, XYZ, Amat, ops, SGData)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestAngle(XYZ, Amat)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestPlane(XYZ, Amat)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestChiral(XYZ, Amat)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestTorsion(XYZ, Amat)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.calcTorsionEnergy(TOR, Coeff=[])¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getTorsionDeriv(XYZ, Amat, Coeff)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestRama(XYZ, Amat)¶
Computes a pair of torsion angles in a 5 atom string
- Parameters:
XYZ (nparray) – crystallographic coordinates of 5 atoms
Amat (nparray) – crystal to cartesian transformation matrix
- Returns:
list (phi,psi) two torsion angles in degrees
- schrodinger.application.matsci.gsas.GSASIImath.calcRamaEnergy(phi, psi, Coeff=[])¶
Computes pseudo potential energy from a pair of torsion angles and a numerical description of the potential energy surface. Used to create penalty function in LS refinement: Eval(\phi,\psi) = C[0]*exp(-V/1000)
where V = -C[3] * (\phi-C[1])^2 - C[4]*(\psi-C[2])^2 - 2*(\phi-C[1])*(\psi-C[2])
- Parameters:
phi (float) – first torsion angle (\phi)
psi (float) – second torsion angle (\psi)
Coeff (list) – pseudo potential coefficients
- Returns:
list (sum,Eval): pseudo-potential difference from minimum & value; sum is used for penalty function.
- schrodinger.application.matsci.gsas.GSASIImath.getRamaDeriv(XYZ, Amat, Coeff)¶
Computes numerical derivatives of torsion angle pair pseudo potential with respect of crystallographic atom coordinates of the 5 atom sequence
- Parameters:
XYZ (nparray) – crystallographic coordinates of 5 atoms
Amat (nparray) – crystal to cartesian transformation matrix
Coeff (list) – pseudo potential coefficients
- Returns:
list (deriv) derivatives of pseudopotential with respect to 5 atom crystallographic xyz coordinates.
- schrodinger.application.matsci.gsas.GSASIImath.getRestPolefig(ODFln, SamSym, Grid)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRestPolefigDerv(HKL, Grid, SHCoeff)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getDistDerv(Oxyz, Txyz, Amat, Tunit, Top, SGData)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getAngleDerv(Oxyz, Axyz, Bxyz, Amat, Tunit, symNo, SGData)¶
- schrodinger.application.matsci.gsas.GSASIImath.getAngSig(VA, VB, Amat, SGData, covData={})¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetDistSig(Oatoms, Atoms, Amat, SGData, covData={})¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetAngleSig(Oatoms, Atoms, Amat, SGData, covData={})¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetTorsionSig(Oatoms, Atoms, Amat, SGData, covData={})¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.GetDATSig(Oatoms, Atoms, Amat, SGData, covData={})¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.ValEsd(value, esd=0, nTZ=False)¶
Format a floating point number with a given level of precision or with in crystallographic format with a “esd”, as value(esd). If esd is negative the number is formatted with the level of significant figures appropriate if abs(esd) were the esd, but the esd is not included. if the esd is zero, approximately 6 significant figures are printed. nTZ=True causes “extra” zeros to be removed after the decimal place. for example:
“1.235(3)” for value=1.2346 & esd=0.003
“1.235(3)e4” for value=12346. & esd=30
“1.235(3)e6” for value=0.12346e7 & esd=3000
“1.235” for value=1.2346 & esd=-0.003
“1.240” for value=1.2395 & esd=-0.003
“1.24” for value=1.2395 & esd=-0.003 with nTZ=True
“1.23460” for value=1.2346 & esd=0.0
- Parameters:
value (float) – number to be formatted
esd (float) – uncertainty or if esd < 0, specifies level of precision to be shown e.g. esd=-0.01 gives 2 places beyond decimal
nTZ (bool) – True to remove trailing zeros (default is False)
- Returns:
value(esd) or value as a string
- schrodinger.application.matsci.gsas.GSASIImath.validProtein(Phase, old)¶
- schrodinger.application.matsci.gsas.GSASIImath.FitTexture(General, Gangls, refData, keyList, pgbar)¶
- schrodinger.application.matsci.gsas.GSASIImath.adjHKLmax(SGData, Hmax)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.OmitMap(data, reflDict, pgbar=None)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.FourierMap(data, reflDict)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.Fourier4DMap(data, reflDict)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.printRho(SGLaue, rho, rhoMax)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.findOffset(SGData, A, Fhkl)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.ChargeFlip(data, reflDict, pgbar)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.findSSOffset(SGData, SSGData, A, Fhklm)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.SSChargeFlip(data, reflDict, pgbar)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.getRho(xyz, mapData)¶
get scattering density at a point by 8-point interpolation param xyz: coordinate to be probed param: mapData: dict of map data
- Returns:
density at xyz
- schrodinger.application.matsci.gsas.GSASIImath.getRhos(XYZ, rho)¶
get scattering density at an array of point by 8-point interpolation this is faster than gerRho which is only used for single points. However, getRhos is replaced by scipy.ndimage.interpolation.map_coordinates which does a better job & is just as fast. Thus, getRhos is unused in GSAS-II at this time. param xyz: array coordinates to be probed Nx3 param: rho: array copy of map (NB: don’t use original!)
- Returns:
density at xyz
- schrodinger.application.matsci.gsas.GSASIImath.SearchMap(generalData, drawingData, Neg=False)¶
Does a search of a density map for peaks meeting the criterion of peak height is greater than mapData[‘cutOff’]/100 of mapData[‘rhoMax’] where mapData is data[‘General’][‘mapData’]; the map is also in mapData.
- Parameters:
generalData – the phase data structure; includes the map
drawingData – the drawing data structure
Neg – if True then search for negative peaks (i.e. H-atoms & neutron data)
- Returns:
(peaks,mags,dzeros) where
peaks : ndarray x,y,z positions of the peaks found in the map
mags : ndarray the magnitudes of the peaks
dzeros : ndarray the distance of the peaks from the unit cell origin
dcent : ndarray the distance of the peaks from the unit cell center
- schrodinger.application.matsci.gsas.GSASIImath.sortArray(data, pos, reverse=False)¶
data is a list of items sort by pos in list; reverse if True
- schrodinger.application.matsci.gsas.GSASIImath.PeaksEquiv(data, Ind)¶
Find the equivalent map peaks for those selected. Works on the contents of data[‘Map Peaks’].
- Parameters:
data – the phase data structure
Ind (list) – list of selected peak indices
- Returns:
augmented list of peaks including those related by symmetry to the ones in Ind
- schrodinger.application.matsci.gsas.GSASIImath.PeaksUnique(data, Ind)¶
Finds the symmetry unique set of peaks from those selected. Works on the contents of data[‘Map Peaks’].
- Parameters:
data – the phase data structure
Ind (list) – list of selected peak indices
- Returns:
the list of symmetry unique peaks from among those given in Ind
- schrodinger.application.matsci.gsas.GSASIImath.getCWsig(ins, pos)¶
get CW peak profile sigma^2
- Parameters:
ins (dict) – instrument parameters with at least ‘U’, ‘V’, & ‘W’ as values only
pos (float) – 2-theta of peak
- Returns:
float getCWsig: peak sigma^2
- schrodinger.application.matsci.gsas.GSASIImath.getCWsigDeriv(pos)¶
get derivatives of CW peak profile sigma^2 wrt U,V, & W
- Parameters:
pos (float) – 2-theta of peak
- Returns:
list getCWsigDeriv: d(sig^2)/dU, d(sig)/dV & d(sig)/dW
- schrodinger.application.matsci.gsas.GSASIImath.getCWgam(ins, pos)¶
get CW peak profile gamma
- Parameters:
ins (dict) – instrument parameters with at least ‘X’, ‘Y’ & ‘Z’ as values only
pos (float) – 2-theta of peak
- Returns:
float getCWgam: peak gamma
- schrodinger.application.matsci.gsas.GSASIImath.getCWgamDeriv(pos)¶
get derivatives of CW peak profile gamma wrt X, Y & Z
- Parameters:
pos (float) – 2-theta of peak
- Returns:
list getCWgamDeriv: d(gam)/dX & d(gam)/dY
- schrodinger.application.matsci.gsas.GSASIImath.getTOFsig(ins, dsp)¶
get TOF peak profile sigma^2
- Parameters:
ins (dict) – instrument parameters with at least ‘sig-0’, ‘sig-1’ & ‘sig-q’ as values only
dsp (float) – d-spacing of peak
- Returns:
float getTOFsig: peak sigma^2
- schrodinger.application.matsci.gsas.GSASIImath.getTOFsigDeriv(dsp)¶
get derivatives of TOF peak profile sigma^2 wrt sig-0, sig-1, & sig-q
- Parameters:
dsp (float) – d-spacing of peak
- Returns:
list getTOFsigDeriv: d(sig0/d(sig-0), d(sig)/d(sig-1) & d(sig)/d(sig-q)
- schrodinger.application.matsci.gsas.GSASIImath.getTOFgamma(ins, dsp)¶
get TOF peak profile gamma
- Parameters:
ins (dict) – instrument parameters with at least ‘X’, ‘Y’ & ‘Z’ as values only
dsp (float) – d-spacing of peak
- Returns:
float getTOFgamma: peak gamma
- schrodinger.application.matsci.gsas.GSASIImath.getTOFgammaDeriv(dsp)¶
get derivatives of TOF peak profile gamma wrt X, Y & Z
- Parameters:
dsp (float) – d-spacing of peak
- Returns:
list getTOFgammaDeriv: d(gam)/dX & d(gam)/dY
- schrodinger.application.matsci.gsas.GSASIImath.getTOFbeta(ins, dsp)¶
get TOF peak profile beta
- Parameters:
ins (dict) – instrument parameters with at least ‘beat-0’, ‘beta-1’ & ‘beta-q’ as values only
dsp (float) – d-spacing of peak
- Returns:
float getTOFbeta: peak beat
- schrodinger.application.matsci.gsas.GSASIImath.getTOFbetaDeriv(dsp)¶
get derivatives of TOF peak profile beta wrt beta-0, beta-1, & beat-q
- Parameters:
dsp (float) – d-spacing of peak
- Returns:
list getTOFbetaDeriv: d(beta)/d(beat-0), d(beta)/d(beta-1) & d(beta)/d(beta-q)
- schrodinger.application.matsci.gsas.GSASIImath.getTOFalpha(ins, dsp)¶
get TOF peak profile alpha
- Parameters:
ins (dict) – instrument parameters with at least ‘alpha’ as values only
dsp (float) – d-spacing of peak
- Returns:
flaot getTOFalpha: peak alpha
- schrodinger.application.matsci.gsas.GSASIImath.getTOFalphaDeriv(dsp)¶
get derivatives of TOF peak profile beta wrt alpha
- Parameters:
dsp (float) – d-spacing of peak
- Returns:
float getTOFalphaDeriv: d(alp)/d(alpha)
- schrodinger.application.matsci.gsas.GSASIImath.setPeakparms(Parms, Parms2, pos, mag, ifQ=False, useFit=False)¶
set starting peak parameters for single peak fits from plot selection or auto selection
- Parameters:
Parms (dict) – instrument parameters dictionary
Parms2 (dict) – table lookup for TOF profile coefficients
pos (float) – peak position in 2-theta, TOF or Q (ifQ=True)
mag (float) – peak top magnitude from pick
ifQ (bool) – True if pos in Q
useFit (bool) – True if use fitted CW Parms values (not defaults)
- Returns:
list XY: peak list entry: for CW: [pos,0,mag,1,sig,0,gam,0] for TOF: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] NB: mag refinement set by default, all others off
- class schrodinger.application.matsci.gsas.GSASIImath.base_schedule¶
Bases:
object
- __init__()¶
- init(**options)¶
- getstart_temp(best_state)¶
Find a matching starting temperature and starting parameters vector i.e. find x0 such that func(x0) = T0.
- Parameters:
best_state – _state A _state object to store the function value and x0 found.
- Returns:
x0 : array The starting parameters vector.
- set_range(x0, frac)¶
- accept_test(dE)¶
- update_guess(x0)¶
- update_temp(x0)¶
- class schrodinger.application.matsci.gsas.GSASIImath.fast_sa¶
Bases:
base_schedule
- init(**options)¶
- update_guess(x0)¶
- update_temp()¶
- class schrodinger.application.matsci.gsas.GSASIImath.log_sa¶
Bases:
base_schedule
- init(**options)¶
- update_guess(x0)¶
- update_temp()¶
- schrodinger.application.matsci.gsas.GSASIImath.makeTsched(data)¶
- schrodinger.application.matsci.gsas.GSASIImath.anneal(func, x0, args=(), schedule='fast', T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400, feps=1e-06, quench=1.0, c=1.0, lower=-100, upper=100, dwell=50, slope=0.9, ranStart=False, ranRange=0.1, autoRan=False, dlg=None)¶
Minimize a function using simulated annealing.
Schedule is a schedule class implementing the annealing schedule. Available ones are ‘fast’, ‘cauchy’, ‘boltzmann’
- Parameters:
func (callable) – f(x, *args) Function to be optimized.
x0 (ndarray) – Initial guess.
args (tuple) – Extra parameters to
func
.schedule (base_schedule) – Annealing schedule to use (a class).
T0 (float) – Initial Temperature (estimated as 1.2 times the largest cost-function deviation over random points in the range).
Tf (float) – Final goal temperature.
maxeval (int) – Maximum function evaluations.
maxaccept (int) – Maximum changes to accept.
maxiter (int) – Maximum cooling iterations.
feps (float) – Stopping relative error tolerance for the function value in last four coolings.
quench,c (float) – Parameters to alter fast_sa schedule.
lower,upper (float/ndarray) – Lower and upper bounds on
x
.dwell (int) – The number of times to search the space at each temperature.
slope (float) – Parameter for log schedule
ranStart=False (bool) – True for set 10% of ranges about x
- Returns:
(xmin, Jmin, T, feval, iters, accept, retval) where
xmin (ndarray): Point giving smallest value found.
Jmin (float): Minimum value of function found.
T (float): Final temperature.
feval (int): Number of function evaluations.
iters (int): Number of cooling iterations.
accept (int): Number of tests accepted.
retval (int): Flag indicating stopping condition:
0: Points no longer changing
1: Cooled to final temperature
2: Maximum function evaluations
3: Maximum cooling iterations reached
4: Maximum accepted query locations reached
5: Final point not the minimum amongst encountered points
Notes: Simulated annealing is a random algorithm which uses no derivative information from the function being optimized. In practice it has been more useful in discrete optimization than continuous optimization, as there are usually better algorithms for continuous optimization problems.
Some experimentation by trying the difference temperature schedules and altering their parameters is likely required to obtain good performance.
The randomness in the algorithm comes from random sampling in numpy. To obtain the same results you can call numpy.random.seed with the same seed immediately before calling scipy.optimize.anneal.
We give a brief description of how the three temperature schedules generate new points and vary their temperature. Temperatures are only updated with iterations in the outer loop. The inner loop is over range(dwell), and new points are generated for every iteration in the inner loop. (Though whether the proposed new points are accepted is probabilistic.)
For readability, let d denote the dimension of the inputs to func. Also, let x_old denote the previous state, and k denote the iteration number of the outer loop. All other variables not defined below are input variables to scipy.optimize.anneal itself.
In the ‘fast’ schedule the updates are
u ~ Uniform(0, 1, size=d) y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0) xc = y * (upper - lower) x_new = x_old + xc T_new = T0 * exp(-c * k**quench)
- schrodinger.application.matsci.gsas.GSASIImath.worker(iCyc, data, RBdata, reflType, reflData, covData, out_q, out_t, out_n, nprocess=-1)¶
- schrodinger.application.matsci.gsas.GSASIImath.MPmcsaSearch(nCyc, data, RBdata, reflType, reflData, covData, nprocs)¶
- schrodinger.application.matsci.gsas.GSASIImath.mcsaSearch(data, RBdata, reflType, reflData, covData, pgbar, start=True)¶
default doc string
- Parameters:
name (type) – description
- Returns:
type name: description
- schrodinger.application.matsci.gsas.GSASIImath.prodQQ(QA, QB)¶
Grassman quaternion product QA,QB quaternions; q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.normQ(QA)¶
get length of quaternion & normalize it q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.invQ(Q)¶
get inverse of quaternion q=r+ai+bj+ck; q* = r-ai-bj-ck
- schrodinger.application.matsci.gsas.GSASIImath.prodQVQ(Q, V)¶
compute the quaternion vector rotation qvq-1 = v’ q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.Q2Mat(Q)¶
make rotation matrix from quaternion q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.AV2Q(A, V)¶
convert angle (radians) & vector to quaternion q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.AVdeg2Q(A, V)¶
convert angle (degrees) & vector to quaternion q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.Q2AVdeg(Q)¶
convert quaternion to angle (degrees 0-360) & normalized vector q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.Q2AV(Q)¶
convert quaternion to angle (radians 0-2pi) & normalized vector q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.randomQ(r0, r1, r2, r3)¶
create random quaternion from 4 random numbers in range (-1,1)
- schrodinger.application.matsci.gsas.GSASIImath.randomAVdeg(r0, r1, r2, r3)¶
create random angle (deg),vector from 4 random number in range (-1,1)
- schrodinger.application.matsci.gsas.GSASIImath.makeQuat(A, B, C)¶
Make quaternion from rotation of A vector to B vector about C axis
- Parameters:
A,B,C (np.array) – Cartesian 3-vectors
- Returns:
quaternion & rotation angle in radians q=r+ai+bj+ck
- schrodinger.application.matsci.gsas.GSASIImath.annealtests()¶