schrodinger.ui.qt.presets.manage_presets_dialog module¶
- class schrodinger.ui.qt.presets.manage_presets_dialog.PresetRowModel(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.models.parameters.CompoundParam
- preset_name: str¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- is_default: bool¶
Base class for all Param classes. A Param is a descriptor for storing data, which means that a single Param instance will manage the data values for multiple instances of the class that owns it. Example:
class Coord(CompoundParam): x: int y: int
An instance of the Coord class can be created normally, and Params can be accessed as normal attributes:
coord = Coord() coord.x = 4
When a Param value is set, the
valueChanged
signal is emitted. Params can be serialized and deserialized to and from JSON. Params can also be nested:class Atom(CompoundParam): coord: Coord element: str
- is_defaultChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- is_defaultReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- preset_nameChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- preset_nameReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- class schrodinger.ui.qt.presets.manage_presets_dialog.ManagePresetsModel(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.models.parameters.CompoundParam
- preset_names: List[schrodinger.ui.qt.presets.manage_presets_dialog.PresetRowModel]¶
A list param that contains
CompoundParam
instances. Signals will be emitted any time an item in the list changes or the contents of the list itself change. See_SignalContainer
and_PLPSignalContainer
for information on specific signals.
- selected_names: List[schrodinger.ui.qt.presets.manage_presets_dialog.PresetRowModel]¶
A list param that contains
CompoundParam
instances. Signals will be emitted any time an item in the list changes or the contents of the list itself change. See_SignalContainer
and_PLPSignalContainer
for information on specific signals.
- preset_namesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- preset_namesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- selected_namesChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- selected_namesReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- class schrodinger.ui.qt.presets.manage_presets_dialog.ManagePresetsTableSpec(*args, _param_type=<object object>, **kwargs)¶
Bases:
schrodinger.ui.qt.mapperwidgets.plptable.TableSpec
- preset_name = <schrodinger.ui.qt.mapperwidgets.plptable.FieldColumn object>¶
- is_default = <schrodinger.ui.qt.mapperwidgets.plptable.FieldColumn object>¶
- displayDefault(is_default)¶
- columnsChanged¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- columnsReplaced¶
pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL
types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.
- class schrodinger.ui.qt.presets.manage_presets_dialog.ManagePresetsDialog(preset_manager, preset_model)¶
Bases:
schrodinger.models.mappers.MapperMixin
,schrodinger.ui.qt.basewidgets.BaseDialog
- ui_module = <module 'schrodinger.ui.qt.presets.manage_presets_dialog_ui' from '/scr/buildbot/savedbuilds/2024-3/NB/build-133/internal/lib/python3.11/site-packages/schrodinger/ui/qt/presets/manage_presets_dialog_ui.py'>¶
- model_class¶
alias of
schrodinger.ui.qt.presets.manage_presets_dialog.ManagePresetsModel
- __init__(preset_manager, preset_model)¶
- Parameters
preset_manager (schrodinger.models.tasks.presets.PresetManager) – The preset manager to use for saving a preset.
preset_model (schrodinger.models.parameters.CompoundParam) – The model to use for applying any presets.
- initSetUp()¶
Creates widget from
ui
and stores itui_widget
.Suggested subclass use: create and initialize subwidgets, and connect signals.
- initLayOut()¶
@overrides: widgetmixins.InitMixin
- initFinalize()¶
Suggested subclass use: perform any remaining initialization.
- defineMappings()¶
Override this in the subclass to define mappings. Should return a list of tuples [(<target>, <param>)]. Targets can be:
a basic widget, like
QLineEdit
orQComboBox
a custom object that inherits
MapperMixin
orTargetMixin
a
TargetSpec
instancea slot
For common widgets, standard signals and getter/setter methods will be used, as defined in
mappers._get_default_access_names()
.For more fine-grained custom control, instantiate a
TargetSpec
object, which allows custom setters, getters, and signals to be specified.Supplying a slot as the first element of the tuple is equivalent to providing
TargetSpec(slot=my_slot)
.Note that all target slots are triggered on
setModel()
as well as in response to the specified signal.The param is an abstract param reference, e.g. MyModel.my_param.
Example:
def defineMappings(self): combo = self.style_combo return [(self.name_le, MyModel.name), (TargetSpec(combo, getter=combo.currentText, setter=combo.setCurrentText), MyModel.style), (self.coord_widget, MyModel.coord), (self._onASLTextChanged, MyModel.asl_text)]
- getSignalsAndSlots(model)¶
Override this method to specify signal and slot pairs that need to be connected/disconnected whenever the model instance is switched using setModel. The model instance is provided as an argument so that instance-specific signals can be used, but any pairs of signals and slots may be returned from this method.
- Returns
a list of 2-tuples where each tuple is a signal, slot pair