schrodinger.application.desmond.mxmd.mxmd_cleanup module¶
A post-simulation clean-up script for Mixed Solvent (MxMD) workflow. This script extracts the occupancy data for all co-solvent subjob and combines them into occupancy maps. It then clusters and identifies Hotspots from these maps.
As an output, a Maestro Project file (.prjzip) and a ‘results’ directory are written. The directory contains CNS maps for all co-solvent probes and a Maestro structure of the last snapshots for all co-solvent subjob. The command should be run from the base directory of the mixed solvent job.
- schrodinger.application.desmond.mxmd.mxmd_cleanup.set_isosurface(pt: schrodinger.project.project.Project, cns_file: str, row_index: int, cutoff: float, color: tuple, surf_name: str, surf_comment: str)¶
When writing a project table, this function will setup all isosurface properties.
- class schrodinger.application.desmond.mxmd.mxmd_cleanup.Spot(*, grid_points: Set[Tuple[float, float, float]], grid: numpy.ndarray, probe_name: str, grid_spacing: Tuple[float, float, float], probe_mols: Set[schrodinger.structure._structure._Molecule])¶
Bases:
object
Occupancy map for each probe is clustered and discretized into separate occupancy clusters called ‘Spots’. Each Spot object contains the grid’s coordinates, their occupancy values and the probe CTs.
- __init__(*, grid_points: Set[Tuple[float, float, float]], grid: numpy.ndarray, probe_name: str, grid_spacing: Tuple[float, float, float], probe_mols: Set[schrodinger.structure._structure._Molecule])¶
- property volume: float¶
- property probe_name: str¶
- property probe_mols: Set[schrodinger.structure._structure._Molecule]¶
- property score: float¶
- class schrodinger.application.desmond.mxmd.mxmd_cleanup.Hotspot(box_size: Tuple[float, float, float], center: Tuple[float, float, float], grid_spacing: Tuple[float, float, float])¶
Bases:
object
A
Hotspot
refers to a collection of grid points, occupied by two or moreSpots
.- __init__(box_size: Tuple[float, float, float], center: Tuple[float, float, float], grid_spacing: Tuple[float, float, float])¶
- Parameters
box_size – The X,Y,Z box size, in which the grid is defined, in Å
center – The X,Y,Z coordinates of the center of the box, in Å
grid_spacing – The X,Y,Z spacing of the grid, in Å
- add_spot(spot: schrodinger.application.desmond.mxmd.mxmd_cleanup.Spot)¶
spot must have the same grid_spacing
- property volume: float¶
- property name: str¶
- set_rank(rank: int)¶
- property score: int¶
Calculate the score of the hotspot by summing the sigma values.
- get_probes_structure(verbose=False) schrodinger.structure._structure.Structure ¶
- write_mae(filename: str)¶
Write probe CTs that correspond to this hotspot.
- write_cns(filename: str, crop_size: float = None)¶
Write hotspot grid to cns format.
- Parameters
crop_size – to reduce the size of he CNS files that is written, crop the grid to specified size.
- schrodinger.application.desmond.mxmd.mxmd_cleanup.split_into_spots(probe_name: str, probe_data: numpy.array, probe_mols: List[schrodinger.structure._structure._Molecule], grid_spacing: Tuple[float, float, float], grid_center: Tuple[float, float, float], box_size: Tuple[float, float, float], sigma: float, cluster_cutoff: float) List[schrodinger.application.desmond.mxmd.mxmd_cleanup.Spot] ¶
Given an occupancy grid for a single probe, cluster these points and create
Spot
objects from them.
- class schrodinger.application.desmond.mxmd.mxmd_cleanup.CleanUp(chkpt_file: str, sigma: float = 20.0, cluster_cutoff: float = 3.0, ligand_xyz: numpy.array = None)¶
Bases:
object
Class for cleaning up mixed solvent subjobs.
- __init__(chkpt_file: str, sigma: float = 20.0, cluster_cutoff: float = 3.0, ligand_xyz: numpy.array = None)¶
- run()¶
Run the cleanup workflow.
- get_subjob_names() List[str] ¶
- Returns
A list of subjob names.
- create_results_directory()¶
Create directory in which all data results will be written to.
- read_archive_data()¶
Copy CNS and raw file from the subjob analysis’ stage.
- gen_normgrid_data()¶
Generate normalized occupancy data
- write_probe_files() Tuple[List[str], List[str]] ¶
Write CNS and Maestro files for each probe type.
- Returns
Two list of cns and mae files for each probe type
- write_hotspot_files() Tuple[List[str], List[str]] ¶
Write CNS and MAE files corresponding to each Hotspot.
- Returns
Two list of cns and mae files for each hotspot
- check_ligand_overlap(hotspots: List[schrodinger.application.desmond.mxmd.mxmd_cleanup.Hotspot])¶
- get_ref_receptor() schrodinger.structure._structure.Structure ¶
Read one of the output structures and extract the original input coordinates, which are used as reference coordinates.
- write_ref_receptor()¶
Write input receptor reference coordinates into a predefined location.
- write_maestro_project()¶
Write a maestro prj table containing a summary of the results.
- prepare_ct(ct: schrodinger.structure._structure.Structure, probe: str = '')¶
Change structure title and remove trajectory and hierarchy info.
- Parameters
ct – Structure to modify.
probe – If specified, the name of the probe. Otherwise use the jobname. This is the default.
- schrodinger.application.desmond.mxmd.mxmd_cleanup.parse_cmd(cmdline: List[str]) argparse.Namespace ¶
- schrodinger.application.desmond.mxmd.mxmd_cleanup.main(cmdline=None)¶