schrodinger.application.prepwizard2.diagnostics module

class schrodinger.application.prepwizard2.diagnostics.Problems(*args, _param_type=<object object>, **kwargs)

Bases: schrodinger.models.parameters.CompoundParam

invalid_types: List[Tuple[int, int, int]]

A Param to represent lists. Values of this param will have a mutated signal that will be emitted whenever any mutation method is called.

The constructor optionally takes a item_class keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.

missing: List[Tuple[int, int, int, bool]]

A Param to represent lists. Values of this param will have a mutated signal that will be emitted whenever any mutation method is called.

The constructor optionally takes a item_class keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.

overlapping: List[Tuple[int, int]]

A Param to represent lists. Values of this param will have a mutated signal that will be emitted whenever any mutation method is called.

The constructor optionally takes a item_class keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.

alternates: List[Tuple[int, float]]

A Param to represent lists. Values of this param will have a mutated signal that will be emitted whenever any mutation method is called.

The constructor optionally takes a item_class keyword argument to specify what type of class the items in the list will be. This information will be used for jsonifying the list if specified.

alternatesChanged

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

alternatesReplaced

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

invalid_typesChanged

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

invalid_typesReplaced

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

missingChanged

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

missingReplaced

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

overlappingChanged

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

overlappingReplaced

pyqtSignal(*types, name: str = …, revision: int = …, arguments: Sequence = …) -> PYQT_SIGNAL

types is normally a sequence of individual types. Each type is either a type object or a string that is the name of a C++ type. Alternatively each type could itself be a sequence of types each describing a different overloaded signal. name is the optional C++ name of the signal. If it is not specified then the name of the class attribute that is bound to the signal is used. revision is the optional revision of the signal that is exported to QML. If it is not specified then 0 is used. arguments is the optional sequence of the names of the signal’s arguments.

schrodinger.application.prepwizard2.diagnostics.get_problems(st)
schrodinger.application.prepwizard2.diagnostics.get_atoms_with_improper_atom_types(st)

Returns a list of (atomnum, expected_valence, actual_valence) items. expected_valence is None for atom types of 150 or above.

schrodinger.application.prepwizard2.diagnostics.find_missing_res_atoms(st)

Seaches the specified structure for missing residue atoms, and returns a list of: (atomnum, num_heavy, expected_heavy, missing_only_sidechains)

This list DOES include residues with only backbone atoms missing.

schrodinger.application.prepwizard2.diagnostics.get_overlapping_atoms(st)
schrodinger.application.prepwizard2.diagnostics.find_residues_with_multiple_occupancies(st)

Find residues that have at least one atom with multiple occupancies (alternate states).

Parameters

st (structure.Structure) – Protein structure

Returns

List of (Atom index, average occupancy)

Return type

list