schrodinger.seam.examples.active_learning_weigher module¶
A workflow for generating a “model” that predicts the molecular weight of a molecule based on the number of atoms and types of atoms in the molecule.
Basic usage:
$SCHRODINGER/run seam_example.py active_learning_weigher
- class schrodinger.seam.examples.active_learning_weigher.PredWeight(seen_count: int, prediction: float, element: str)¶
Bases:
object
- seen_count: int¶
- prediction: float¶
- element: str¶
- __init__(seen_count: int, prediction: float, element: str) None ¶
- class schrodinger.seam.examples.active_learning_weigher.MolWtModel(predict_weights: Dict[str, float])¶
Bases:
object
- predict_weights: Dict[str, float]¶
- classmethod initialize()¶
- toText() str ¶
- __init__(predict_weights: Dict[str, float]) None ¶
- schrodinger.seam.examples.active_learning_weigher.predict(model: schrodinger.seam.examples.active_learning_weigher.MolWtModel, mol: rdkit.Chem.rdchem.Mol) float ¶
- schrodinger.seam.examples.active_learning_weigher.train(model: schrodinger.seam.examples.active_learning_weigher.MolWtModel, mols_with_wts: Iterable[Tuple[rdkit.Chem.rdchem.Mol, float]]) schrodinger.seam.examples.active_learning_weigher.MolWtModel ¶
Train the model by updating the weights based on the actual weights of the input molecules.
- schrodinger.seam.examples.active_learning_weigher.to_mols(smiles: str) List[rdkit.Chem.rdchem.Mol] ¶
- schrodinger.seam.examples.active_learning_weigher.main(args=None)¶