schrodinger.seam.coders module¶
- exception schrodinger.seam.coders.UnserializableMolError¶
Bases:
Exception- __init__(*args, **kwargs)¶
- args¶
- with_traceback()¶
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- class schrodinger.seam.coders.MolToSmilesCoder¶
Bases:
apache_beam.coders.coders.Coder- encode(mol: rdkit.Chem.rdchem.Mol) bytes¶
Encodes the given object into a byte string.
- decode(smiles_bytes: bytes) rdkit.Chem.rdchem.Mol¶
Decodes the given byte string into the corresponding object.
- is_deterministic()¶
Whether this coder is guaranteed to encode values deterministically.
A deterministic coder is required for key coders in GroupByKey operations to produce consistent results.
For example, note that the default coder, the PickleCoder, is not deterministic: the ordering of picked entries in maps may vary across executions since there is no defined order, and such a coder is not in general suitable for usage as a key coder in GroupByKey operations, since each instance of the same key may be encoded differently.
- Returns:
Whether coder is deterministic.
- estimate_size(mol: rdkit.Chem.rdchem.Mol) int¶
Estimates the encoded size of the given value, in bytes.
Dataflow estimates the encoded size of a PCollection processed in a pipeline step by using the estimated size of a random sample of elements in that PCollection.
The default implementation encodes the given value and returns its byte size. If a coder can provide a fast estimate of the encoded size of a value (e.g., if the encoding has a fixed size), it can provide its estimate here to improve performance.
- Arguments:
value: the value whose encoded size is to be estimated.
- Returns:
The estimated encoded size of the given value.
- as_deterministic_coder(step_label, error_message=None)¶
Returns a deterministic version of self, if possible.
Otherwise raises a value error.
- decode_nested(encoded)¶
Uses the underlying implementation to decode in nested format.
- encode_nested(value)¶
Uses the underlying implementation to encode in nested format.
- classmethod from_runner_api(coder_proto: Type[apache_beam.coders.coders.CoderT], context: org.apache.beam.model.pipeline.v1.beam_runner_api_pb2.Coder) apache_beam.coders.coders.CoderT¶
Converts from an FunctionSpec to a Fn object.
Prefer registering a urn with its parameter type and constructor.
- classmethod from_type_hint(unused_typehint: Type[apache_beam.coders.coders.CoderT], unused_registry: Any) apache_beam.coders.coders.CoderT¶
- get_impl()¶
For internal use only; no backwards-compatibility guarantees.
Returns the CoderImpl backing this Coder.
- is_kv_coder() bool¶
- key_coder() apache_beam.coders.coders.Coder¶
- static register_structured_urn(urn: str, cls: Type[apache_beam.coders.coders.Coder]) None¶
Register a coder that’s completely defined by its urn and its component(s), if any, which are passed to construct the instance.
- classmethod register_urn(urn, parameter_type, fn=None)¶
Registers a urn with a constructor.
For example, if ‘beam:fn:foo’ had parameter type FooPayload, one could write
RunnerApiFn.register_urn('bean:fn:foo', FooPayload, foo_from_proto)where foo_from_proto took as arguments a FooPayload and a PipelineContext. This function can also be used as a decorator rather than passing the callable in as the final parameter.A corresponding to_runner_api_parameter method would be expected that returns the tuple (‘beam:fn:foo’, FooPayload)
- to_runner_api(context: PipelineContext) beam_runner_api_pb2.Coder¶
- to_runner_api_parameter(context: Optional[PipelineContext]) Tuple[str, Any, Sequence[Coder]]¶
- to_type_hint()¶
- value_coder() apache_beam.coders.coders.Coder¶
- class schrodinger.seam.coders.SafeMolToSmilesCoder¶
Bases:
schrodinger.seam.coders.MolToSmilesCoderEncodes and decodes Mol’s to and from SMILES strings similar to
MolToSmilesCoder. However, this coder will raise an exception if the molecule is not sanitizable.“Sanitizable” in this context is defined as a smiles that will return
Nonewhen passed toChem.MolFromSmiles(which by default attempts to sanitize the molecule). This is not as fast asMolToSmilesCoderbecause of the additional check, but will- encode(mol: rdkit.Chem.rdchem.Mol) bytes¶
Encodes the given object into a byte string.
- as_deterministic_coder(step_label, error_message=None)¶
Returns a deterministic version of self, if possible.
Otherwise raises a value error.
- decode(smiles_bytes: bytes) rdkit.Chem.rdchem.Mol¶
Decodes the given byte string into the corresponding object.
- decode_nested(encoded)¶
Uses the underlying implementation to decode in nested format.
- encode_nested(value)¶
Uses the underlying implementation to encode in nested format.
- estimate_size(mol: rdkit.Chem.rdchem.Mol) int¶
Estimates the encoded size of the given value, in bytes.
Dataflow estimates the encoded size of a PCollection processed in a pipeline step by using the estimated size of a random sample of elements in that PCollection.
The default implementation encodes the given value and returns its byte size. If a coder can provide a fast estimate of the encoded size of a value (e.g., if the encoding has a fixed size), it can provide its estimate here to improve performance.
- Arguments:
value: the value whose encoded size is to be estimated.
- Returns:
The estimated encoded size of the given value.
- classmethod from_runner_api(coder_proto: Type[apache_beam.coders.coders.CoderT], context: org.apache.beam.model.pipeline.v1.beam_runner_api_pb2.Coder) apache_beam.coders.coders.CoderT¶
Converts from an FunctionSpec to a Fn object.
Prefer registering a urn with its parameter type and constructor.
- classmethod from_type_hint(unused_typehint: Type[apache_beam.coders.coders.CoderT], unused_registry: Any) apache_beam.coders.coders.CoderT¶
- get_impl()¶
For internal use only; no backwards-compatibility guarantees.
Returns the CoderImpl backing this Coder.
- is_deterministic()¶
Whether this coder is guaranteed to encode values deterministically.
A deterministic coder is required for key coders in GroupByKey operations to produce consistent results.
For example, note that the default coder, the PickleCoder, is not deterministic: the ordering of picked entries in maps may vary across executions since there is no defined order, and such a coder is not in general suitable for usage as a key coder in GroupByKey operations, since each instance of the same key may be encoded differently.
- Returns:
Whether coder is deterministic.
- is_kv_coder() bool¶
- key_coder() apache_beam.coders.coders.Coder¶
- static register_structured_urn(urn: str, cls: Type[apache_beam.coders.coders.Coder]) None¶
Register a coder that’s completely defined by its urn and its component(s), if any, which are passed to construct the instance.
- classmethod register_urn(urn, parameter_type, fn=None)¶
Registers a urn with a constructor.
For example, if ‘beam:fn:foo’ had parameter type FooPayload, one could write
RunnerApiFn.register_urn('bean:fn:foo', FooPayload, foo_from_proto)where foo_from_proto took as arguments a FooPayload and a PipelineContext. This function can also be used as a decorator rather than passing the callable in as the final parameter.A corresponding to_runner_api_parameter method would be expected that returns the tuple (‘beam:fn:foo’, FooPayload)
- to_runner_api(context: PipelineContext) beam_runner_api_pb2.Coder¶
- to_runner_api_parameter(context: Optional[PipelineContext]) Tuple[str, Any, Sequence[Coder]]¶
- to_type_hint()¶
- value_coder() apache_beam.coders.coders.Coder¶
- class schrodinger.seam.coders.StructureCoder¶
Bases:
apache_beam.coders.coders.Coder- encode(st: schrodinger.structure._structure.Structure) bytes¶
Encodes the given object into a byte string.
- decode(mae_bytes: bytes) schrodinger.structure._structure.Structure¶
Decodes the given byte string into the corresponding object.
- is_deterministic()¶
Whether this coder is guaranteed to encode values deterministically.
A deterministic coder is required for key coders in GroupByKey operations to produce consistent results.
For example, note that the default coder, the PickleCoder, is not deterministic: the ordering of picked entries in maps may vary across executions since there is no defined order, and such a coder is not in general suitable for usage as a key coder in GroupByKey operations, since each instance of the same key may be encoded differently.
- Returns:
Whether coder is deterministic.
- as_deterministic_coder(step_label, error_message=None)¶
Returns a deterministic version of self, if possible.
Otherwise raises a value error.
- decode_nested(encoded)¶
Uses the underlying implementation to decode in nested format.
- encode_nested(value)¶
Uses the underlying implementation to encode in nested format.
- estimate_size(value)¶
Estimates the encoded size of the given value, in bytes.
Dataflow estimates the encoded size of a PCollection processed in a pipeline step by using the estimated size of a random sample of elements in that PCollection.
The default implementation encodes the given value and returns its byte size. If a coder can provide a fast estimate of the encoded size of a value (e.g., if the encoding has a fixed size), it can provide its estimate here to improve performance.
- Arguments:
value: the value whose encoded size is to be estimated.
- Returns:
The estimated encoded size of the given value.
- classmethod from_runner_api(coder_proto: Type[apache_beam.coders.coders.CoderT], context: org.apache.beam.model.pipeline.v1.beam_runner_api_pb2.Coder) apache_beam.coders.coders.CoderT¶
Converts from an FunctionSpec to a Fn object.
Prefer registering a urn with its parameter type and constructor.
- classmethod from_type_hint(unused_typehint: Type[apache_beam.coders.coders.CoderT], unused_registry: Any) apache_beam.coders.coders.CoderT¶
- get_impl()¶
For internal use only; no backwards-compatibility guarantees.
Returns the CoderImpl backing this Coder.
- is_kv_coder() bool¶
- key_coder() apache_beam.coders.coders.Coder¶
- static register_structured_urn(urn: str, cls: Type[apache_beam.coders.coders.Coder]) None¶
Register a coder that’s completely defined by its urn and its component(s), if any, which are passed to construct the instance.
- classmethod register_urn(urn, parameter_type, fn=None)¶
Registers a urn with a constructor.
For example, if ‘beam:fn:foo’ had parameter type FooPayload, one could write
RunnerApiFn.register_urn('bean:fn:foo', FooPayload, foo_from_proto)where foo_from_proto took as arguments a FooPayload and a PipelineContext. This function can also be used as a decorator rather than passing the callable in as the final parameter.A corresponding to_runner_api_parameter method would be expected that returns the tuple (‘beam:fn:foo’, FooPayload)
- to_runner_api(context: PipelineContext) beam_runner_api_pb2.Coder¶
- to_runner_api_parameter(context: Optional[PipelineContext]) Tuple[str, Any, Sequence[Coder]]¶
- to_type_hint()¶
- value_coder() apache_beam.coders.coders.Coder¶
- class schrodinger.seam.coders.RouteNodeCoder¶
Bases:
apache_beam.coders.coders.Coder- encode(route_node: schrodinger.application.pathfinder.route.RouteNode) bytes¶
Encodes the given object into a byte string.
- decode(route_node_bytes: bytes) schrodinger.application.pathfinder.route.RouteNode¶
Decodes the given byte string into the corresponding object.
- is_deterministic()¶
Whether this coder is guaranteed to encode values deterministically.
A deterministic coder is required for key coders in GroupByKey operations to produce consistent results.
For example, note that the default coder, the PickleCoder, is not deterministic: the ordering of picked entries in maps may vary across executions since there is no defined order, and such a coder is not in general suitable for usage as a key coder in GroupByKey operations, since each instance of the same key may be encoded differently.
- Returns:
Whether coder is deterministic.
- as_deterministic_coder(step_label, error_message=None)¶
Returns a deterministic version of self, if possible.
Otherwise raises a value error.
- decode_nested(encoded)¶
Uses the underlying implementation to decode in nested format.
- encode_nested(value)¶
Uses the underlying implementation to encode in nested format.
- estimate_size(value)¶
Estimates the encoded size of the given value, in bytes.
Dataflow estimates the encoded size of a PCollection processed in a pipeline step by using the estimated size of a random sample of elements in that PCollection.
The default implementation encodes the given value and returns its byte size. If a coder can provide a fast estimate of the encoded size of a value (e.g., if the encoding has a fixed size), it can provide its estimate here to improve performance.
- Arguments:
value: the value whose encoded size is to be estimated.
- Returns:
The estimated encoded size of the given value.
- classmethod from_runner_api(coder_proto: Type[apache_beam.coders.coders.CoderT], context: org.apache.beam.model.pipeline.v1.beam_runner_api_pb2.Coder) apache_beam.coders.coders.CoderT¶
Converts from an FunctionSpec to a Fn object.
Prefer registering a urn with its parameter type and constructor.
- classmethod from_type_hint(unused_typehint: Type[apache_beam.coders.coders.CoderT], unused_registry: Any) apache_beam.coders.coders.CoderT¶
- get_impl()¶
For internal use only; no backwards-compatibility guarantees.
Returns the CoderImpl backing this Coder.
- is_kv_coder() bool¶
- key_coder() apache_beam.coders.coders.Coder¶
- static register_structured_urn(urn: str, cls: Type[apache_beam.coders.coders.Coder]) None¶
Register a coder that’s completely defined by its urn and its component(s), if any, which are passed to construct the instance.
- classmethod register_urn(urn, parameter_type, fn=None)¶
Registers a urn with a constructor.
For example, if ‘beam:fn:foo’ had parameter type FooPayload, one could write
RunnerApiFn.register_urn('bean:fn:foo', FooPayload, foo_from_proto)where foo_from_proto took as arguments a FooPayload and a PipelineContext. This function can also be used as a decorator rather than passing the callable in as the final parameter.A corresponding to_runner_api_parameter method would be expected that returns the tuple (‘beam:fn:foo’, FooPayload)
- to_runner_api(context: PipelineContext) beam_runner_api_pb2.Coder¶
- to_runner_api_parameter(context: Optional[PipelineContext]) Tuple[str, Any, Sequence[Coder]]¶
- to_type_hint()¶
- value_coder() apache_beam.coders.coders.Coder¶