schrodinger.application.matsci.gsas.GSASIIlattice module¶
# Third-party code. No Schrodinger Copyright.
GSASIIlattice: Unit cells¶
Perform lattice-related computations
Note that G is the reciprocal lattice tensor, and g is its inverse, G = g^{-1}, where
g = \left( \begin{matrix} a^2 & a b\cos gamma & a c\cos\beta \\ a b\cos\gamma & b^2 & b c cos\alpha \\ a c\cos\beta & b c \cos\alpha & c^2 \end{matrix}\right)
The “A tensor” terms are defined as A = (\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\end{matrix}) and A can be used in this fashion: d^* = sqrt {A_1 h^2 + A_2 k^2 + A_3 l^2 + A_4 hk + A_5 hl + A_6 kl}, where d is the d-spacing, and d^* is the reciprocal lattice spacing, Q = 2 \pi d^* = 2 \pi / d
- schrodinger.application.matsci.gsas.GSASIIlattice.sind(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.asind(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.tand(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.atand(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.atan2d(y, x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.cosd(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.acosd(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.rdsq2d(x)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.sec2HMS(sec)¶
Convert time in sec to H:M:S string
- Parameters
sec – time in seconds
- Returns
H:M:S string (to nearest 100th second)
- schrodinger.application.matsci.gsas.GSASIIlattice.rotdMat(angle, axis=0)¶
Prepare rotation matrix for angle in degrees about axis(=0,1,2)
- Parameters
angle – angle in degrees
axis – axis (0,1,2 = x,y,z) about which for the rotation
- Returns
rotation matrix - 3x3 numpy array
- schrodinger.application.matsci.gsas.GSASIIlattice.rotdMat4(angle, axis=0)¶
Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL
- Parameters
angle – angle in degrees
axis – axis (0,1,2 = x,y,z) about which for the rotation
- Returns
rotation matrix - 4x4 numpy array (last row/column for openGL scaling)
- schrodinger.application.matsci.gsas.GSASIIlattice.fillgmat(cell)¶
Compute lattice metric tensor from unit cell constants
- Parameters
cell – tuple with a,b,c,alpha, beta, gamma (degrees)
- Returns
3x3 numpy array
- schrodinger.application.matsci.gsas.GSASIIlattice.cell2Gmat(cell)¶
Compute real and reciprocal lattice metric tensor from unit cell constants
- Parameters
cell – tuple with a,b,c,alpha, beta, gamma (degrees)
- Returns
reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)
- schrodinger.application.matsci.gsas.GSASIIlattice.A2Gmat(A, inverse=True)¶
Fill real & reciprocal metric tensor (G) from A.
- Parameters
A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
inverse (bool) – if True return both G and g; else just G
- Returns
reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)
- schrodinger.application.matsci.gsas.GSASIIlattice.Gmat2A(G)¶
Extract A from reciprocal metric tensor (G)
- Parameters
G – reciprocal maetric tensor (3x3 numpy array
- Returns
A = [G11,G22,G33,2*G12,2*G13,2*G23]
- schrodinger.application.matsci.gsas.GSASIIlattice.cell2A(cell)¶
Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters
- Parameters
cell – [a,b,c,alpha,beta,gamma] (degrees)
- Returns
G reciprocal metric tensor as 3x3 numpy array
- schrodinger.application.matsci.gsas.GSASIIlattice.A2cell(A)¶
Compute unit cell constants from A
- Parameters
A – [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor
- Returns
a,b,c,alpha, beta, gamma (degrees) - lattice parameters
- schrodinger.application.matsci.gsas.GSASIIlattice.Gmat2cell(g)¶
Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G) The math works the same either way.
- Parameters
G) (g (or) – real (or reciprocal) metric tensor 3x3 array
- Returns
a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees)
- schrodinger.application.matsci.gsas.GSASIIlattice.invcell2Gmat(invcell)¶
- Compute real and reciprocal lattice metric tensor from reciprocal
unit cell constants
- Parameters
invcell – [a*,b*,c*,alpha*, beta*, gamma*] (degrees)
- Returns
reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays)
- schrodinger.application.matsci.gsas.GSASIIlattice.cellDijFill(pfx, phfx, SGData, parmDict)¶
Returns the filled-out reciprocal cell (A) terms from the parameter dictionaries corrected for Dij.
- Parameters
pfx (str) – parameter prefix (“n::”, where n is a phase number)
SGdata (dict) – a symmetry object
parmDict (dict) – a dictionary of parameters
- Returns
A,sigA where each is a list of six terms with the A terms
- schrodinger.application.matsci.gsas.GSASIIlattice.prodMGMT(G, Mat)¶
Transform metric tensor by matrix
- Parameters
G – array metric tensor
Mat – array transformation matrix
- Returns
array new metric tensor
- schrodinger.application.matsci.gsas.GSASIIlattice.TransformCell(cell, Trans)¶
Transform lattice parameters by matrix
- Parameters
cell – list a,b,c,alpha,beta,gamma,(volume)
Trans – array transformation matrix
- Returns
array transformed a,b,c,alpha,beta,gamma,volume
- schrodinger.application.matsci.gsas.GSASIIlattice.TransformXYZ(XYZ, Trans, Vec)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.TransformU6(U6, Trans)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.ExpandCell(Atoms, atCodes, cx, Trans)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.TransformPhase(oldPhase, newPhase, Trans, Uvec, Vvec, ifMag)¶
Transform atoms from oldPhase to newPhase M’ is inv(M) does X’ = M(X-U)+V transformation for coordinates and U’ = MUM/det(M) for anisotropic thermal parameters
- Parameters
oldPhase – dict G2 phase info for old phase
newPhase – dict G2 phase info for new phase; with new cell & space group atoms are from oldPhase & will be transformed
Trans – lattice transformation matrix M
Uvec – array parent coordinates transformation vector U
Vvec – array child coordinate transformation vector V
ifMag – bool True if convert to magnetic phase; if True all nonmagnetic atoms will be removed
- Returns
newPhase dict modified G2 phase info
- Returns
atCodes list atom transformation codes
- schrodinger.application.matsci.gsas.GSASIIlattice.FindNonstandard(controls, Phase)¶
Find nonstandard setting of magnetic cell that aligns with parent nuclear cell
- Parameters
controls – list unit cell indexing controls
Phase – dict new magnetic phase data (NB:not G2 phase construction); modified here
- Returns
None
- schrodinger.application.matsci.gsas.GSASIIlattice.makeBilbaoPhase(result, uvec, trans, ifMag=False)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.FillUnitCell(Phase)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.GetUnique(Phase, atCodes)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rVsq(A)¶
Compute the square of the reciprocal lattice volume (1/V**2) from A’
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rV(A)¶
Compute the reciprocal lattice volume (V*) from A
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_V(A)¶
Compute the real lattice volume (V) from A
- schrodinger.application.matsci.gsas.GSASIIlattice.A2invcell(A)¶
Compute reciprocal unit cell constants from A returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees)
- schrodinger.application.matsci.gsas.GSASIIlattice.Gmat2AB(G)¶
Computes orthogonalization matrix from reciprocal metric tensor G
- Returns
tuple of two 3x3 numpy arrays (A,B)
A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X)
B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x)
- schrodinger.application.matsci.gsas.GSASIIlattice.cell2AB(cell)¶
Computes orthogonalization matrix from unit cell constants
- Parameters
cell (tuple) – a,b,c, alpha, beta, gamma (degrees)
- Returns
tuple of two 3x3 numpy arrays (A,B) A for crystal to Cartesian transformations A*x = np.inner(A,x) = X B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x
- schrodinger.application.matsci.gsas.GSASIIlattice.HKL2SpAng(H, cell, SGData)¶
Computes spherical coords for hkls; view along 001
- Parameters
H (array) – arrays of hkl
cell (tuple) – a,b,c, alpha, beta, gamma (degrees)
SGData (dict) – space group dictionary
- Returns
arrays of r,phi,psi (radius,inclination,azimuth) about 001
- schrodinger.application.matsci.gsas.GSASIIlattice.U6toUij(U6)¶
Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23] NB: there is a non numpy version in GSASIIspc: U2Uij
- Parameters
U6 (list) – 6 terms of u11,u22,…
- Returns
Uij - numpy [3][3] array of uij
- schrodinger.application.matsci.gsas.GSASIIlattice.UijtoU6(U)¶
Fill vector [U11,U22,U33,U12,U13,U23] from Uij NB: there is a non numpy version in GSASIIspc: Uij2U
- schrodinger.application.matsci.gsas.GSASIIlattice.betaij2Uij(betaij, G)¶
Convert beta-ij to Uij tensors
:param beta-ij - numpy array [beta-ij] :param G: reciprocal metric tensor :returns: Uij: numpy array [Uij]
- schrodinger.application.matsci.gsas.GSASIIlattice.Uij2betaij(Uij, G)¶
Convert Uij to beta-ij tensors – stub for eventual completion
- Parameters
Uij – numpy array [Uij]
G – reciprocal metric tensor
- Returns
beta-ij - numpy array [beta-ij]
- schrodinger.application.matsci.gsas.GSASIIlattice.cell2GS(cell)¶
returns Uij to betaij conversion matrix
- schrodinger.application.matsci.gsas.GSASIIlattice.Uij2Ueqv(Uij, GS, Amat)¶
returns 1/3 trace of diagonalized U matrix
- schrodinger.application.matsci.gsas.GSASIIlattice.CosAngle(U, V, G)¶
calculate cos of angle between U & V in generalized coordinates defined by metric tensor G
- Parameters
U – 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array
V – 3-vectors assume numpy arrays, only as (3) vector
G – metric tensor for U & V defined space assume numpy array
- Returns
cos(phi)
- schrodinger.application.matsci.gsas.GSASIIlattice.CosSinAngle(U, V, G)¶
calculate sin & cos of angle between U & V in generalized coordinates defined by metric tensor G
- Parameters
U – 3-vectors assume numpy arrays
V – 3-vectors assume numpy arrays
G – metric tensor for U & V defined space assume numpy array
- Returns
cos(phi) & sin(phi)
- schrodinger.application.matsci.gsas.GSASIIlattice.criticalEllipse(prob)¶
Calculate critical values for probability ellipsoids from probability
- schrodinger.application.matsci.gsas.GSASIIlattice.CellBlock(nCells)¶
Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1 currently only works for nCells = 0 or 1 (not >1)
- schrodinger.application.matsci.gsas.GSASIIlattice.CellAbsorption(ElList, Volume)¶
Compute unit cell absorption
- Parameters
ElList (dict) – dictionary of element contents including mu and number of atoms be cell
Volume (float) – unit cell volume
- Returns
mu-total/Volume
- schrodinger.application.matsci.gsas.GSASIIlattice.combinations(items, n)¶
take n distinct items, order matters
- schrodinger.application.matsci.gsas.GSASIIlattice.uniqueCombinations(items, n)¶
take n distinct items, order is irrelevant
- schrodinger.application.matsci.gsas.GSASIIlattice.selections(items, n)¶
take n (not necessarily distinct) items, order matters
- schrodinger.application.matsci.gsas.GSASIIlattice.permutations(items)¶
take all items, order matters
- schrodinger.application.matsci.gsas.GSASIIlattice.Pos2dsp(Inst, pos)¶
convert powder pattern position (2-theta or TOF, musec) to d-spacing
- schrodinger.application.matsci.gsas.GSASIIlattice.TOF2dsp(Inst, Pos)¶
convert powder pattern TOF, musec to d-spacing by successive approximation Pos can be numpy array
- schrodinger.application.matsci.gsas.GSASIIlattice.Dsp2pos(Inst, dsp)¶
convert d-spacing to powder pattern position (2-theta or TOF, musec)
- schrodinger.application.matsci.gsas.GSASIIlattice.getPeakPos(dataType, parmdict, dsp)¶
convert d-spacing to powder pattern position (2-theta or TOF, musec)
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsq(H, A)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsq2(H, G)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsqSS(H, A, vec)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsqZ(H, A, Z, tth, lam)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsqZSS(H, A, vec, Z, tth, lam)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsqT(H, A, Z, tof, difC)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.calc_rDsqTSS(H, A, vec, Z, tof, difC)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.PlaneIntercepts(Amat, H, phase, stack)¶
find unit cell intercepts for a stack of hkl planes
- schrodinger.application.matsci.gsas.GSASIIlattice.MaxIndex(dmin, A)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.transposeHKLF(transMat, Super, refList)¶
Apply transformation matrix to hkl(m) param: transmat: 3x3 or 4x4 array param: Super: 0 or 1 for extra index param: refList list of h,k,l,…. return: newRefs transformed list of h’,k’,l’,,, return: badRefs list of noninteger h’,k’,l’…
- schrodinger.application.matsci.gsas.GSASIIlattice.sortHKLd(HKLd, ifreverse, ifdup, ifSS=False)¶
sort reflection list on d-spacing; can sort in either order
- Parameters
HKLd – a list of [h,k,l,d,…];
ifreverse – True for largest d first
ifdup – True if duplicate d-spacings allowed
- Returns
sorted reflection list
- schrodinger.application.matsci.gsas.GSASIIlattice.SwapIndx(Axis, H)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.Rh2Hx(Rh)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.Hx2Rh(Hx)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.CentCheck(Cent, H)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.GetBraviasNum(center, system)¶
Determine the Bravais lattice number, as used in GenHBravais
- Parameters
center – one of: ‘P’, ‘C’, ‘I’, ‘F’, ‘R’ (see SGLatt from GSASIIspc.SpcGroup)
system – one of ‘cubic’, ‘hexagonal’, ‘tetragonal’, ‘orthorhombic’, ‘trigonal’ (for R) ‘monoclinic’, ‘triclinic’ (see SGSys from GSASIIspc.SpcGroup)
- Returns
a number between 0 and 13 or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard)
- schrodinger.application.matsci.gsas.GSASIIlattice.GenHBravais(dmin, Bravais, A)¶
Generate the positionally unique powder diffraction reflections
- Parameters
dmin – minimum d-spacing in A
Bravais –
lattice type (see GetBraviasNum). Bravais is one of:
0 F cubic
1 I cubic
2 P cubic
3 R hexagonal (trigonal not rhombohedral)
4 P hexagonal
5 I tetragonal
6 P tetragonal
7 F orthorhombic
8 I orthorhombic
9 A orthorhombic
10 B orthorhombic
11 C orthorhombic
12 P orthorhombic
13 I monoclinic
14 C monoclinic
15 P monoclinic
16 P triclinic
A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
- Returns
HKL unique d list of [h,k,l,d,-1] sorted with largest d first
- schrodinger.application.matsci.gsas.GSASIIlattice.getHKLmax(dmin, SGData, A)¶
finds maximum allowed hkl for given A within dmin
- schrodinger.application.matsci.gsas.GSASIIlattice.GenHLaue(dmin, SGData, A)¶
Generate the crystallographically unique powder diffraction reflections for a lattice and Bravais type
- Parameters
dmin – minimum d-spacing
SGData –
space group dictionary with at least
’SGLaue’: Laue group symbol: one of ‘-1’,’2/m’,’mmm’,’4/m’,’6/m’,’4/mmm’,’6/mmm’, ‘3m1’, ‘31m’, ‘3’, ‘3R’, ‘3mR’, ‘m3’, ‘m3m’
’SGLatt’: lattice centering: one of ‘P’,’A’,’B’,’C’,’I’,’F’
’SGUniq’: code for unique monoclinic axis one of ‘a’,’b’,’c’ (only if ‘SGLaue’ is ‘2/m’) otherwise an empty string
A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
- Returns
HKL = list of [h,k,l,d] sorted with largest d first and is unique part of reciprocal space ignoring anomalous dispersion
- schrodinger.application.matsci.gsas.GSASIIlattice.GenPfHKLs(nMax, SGData, A)¶
Generate the unique pole figure reflections for a lattice and Bravais type. Min d-spacing=1.0A & no more than nMax returned
- Parameters
nMax – maximum number of hkls returned
SGData –
space group dictionary with at least
’SGLaue’: Laue group symbol: one of ‘-1’,’2/m’,’mmm’,’4/m’,’6/m’,’4/mmm’,’6/mmm’, ‘3m1’, ‘31m’, ‘3’, ‘3R’, ‘3mR’, ‘m3’, ‘m3m’
’SGLatt’: lattice centering: one of ‘P’,’A’,’B’,’C’,’I’,’F’
’SGUniq’: code for unique monoclinic axis one of ‘a’,’b’,’c’ (only if ‘SGLaue’ is ‘2/m’) otherwise an empty string
A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
- Returns
HKL = list of ‘h k l’ strings sorted with largest d first; no duplicate zones
- schrodinger.application.matsci.gsas.GSASIIlattice.GenSSHLaue(dmin, SGData, SSGData, Vec, maxH, A)¶
needs a doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.LaueUnique2(SGData, refList)¶
Impose Laue symmetry on hkl
- Parameters
SGData – space group data from ‘P ‘+Laue
HKLF – np.array([[h,k,l,…]]) reflection set to be converted
- Returns
HKLF new reflection array with imposed Laue symmetry
- schrodinger.application.matsci.gsas.GSASIIlattice.LaueUnique(Laue, HKLF)¶
Impose Laue symmetry on hkl
- Parameters
Laue (str) –
Laue symbol, as below
centrosymmetric Laue groups:
['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3', '-31m','-3m1','6/m','6/mmm','m3','m3m']
noncentrosymmetric Laue groups:
['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm', '4','-4','422','4mm','3','312','321','31m','3m1','6','-6', '622','6mm','-62m','-6m2','23','432','-43m']
HKLF – np.array([[h,k,l,…]]) reflection set to be converted
- Returns
HKLF new reflection array with imposed Laue symmetry
- schrodinger.application.matsci.gsas.GSASIIlattice.OdfChk(SGLaue, L, M)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.GenSHCoeff(SGLaue, SamSym, L, IfLMN=True)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.CrsAng(H, cell, SGData)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.SamAng(Tth, Gangls, Sangl, IFCoup)¶
Compute sample orientation angles vs laboratory coord. system
- Parameters
Tth – Signed theta
Gangls – Sample goniometer angles phi,chi,omega,azmuth
Sangl – Sample angle zeros om-0, chi-0, phi-0
IFCoup – True if omega & 2-theta coupled in CW scan
- Returns
psi,gam: Sample odf angles dPSdA,dGMdA: Angle zero derivatives
- schrodinger.application.matsci.gsas.GSASIIlattice.Lnorm(L)¶
- schrodinger.application.matsci.gsas.GSASIIlattice.GetKcl(L, N, SGLaue, phi, beta)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.GetKsl(L, M, SamSym, psi, gam)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.GetKclKsl(L, N, SGLaue, psi, phi, beta)¶
- This is used for spherical harmonics description of preferred orientation;
cylindrical symmetry only (M=0) and no sample angle derivatives returned
- schrodinger.application.matsci.gsas.GSASIIlattice.Glnh(Start, SHCoef, psi, gam, SamSym)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.Flnh(Start, SHCoef, phi, beta, SGData)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.polfcal(ODFln, SamSym, psi, gam)¶
Perform a pole figure computation. Note that the the number of gam values must either be 1 or must match psi. Updated for numpy 1.8.0
- schrodinger.application.matsci.gsas.GSASIIlattice.invpolfcal(ODFln, SGData, phi, beta)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.textureIndex(SHCoef)¶
needs doc string
- schrodinger.application.matsci.gsas.GSASIIlattice.selftestlist = []¶
Defines a list of self-tests
- schrodinger.application.matsci.gsas.GSASIIlattice.TestData()¶
- schrodinger.application.matsci.gsas.GSASIIlattice.test0()¶
- schrodinger.application.matsci.gsas.GSASIIlattice.test1()¶
test cell2A and A2Gmat
- schrodinger.application.matsci.gsas.GSASIIlattice.test2()¶
test Gmat2A, A2cell, A2Gmat, Gmat2cell
- schrodinger.application.matsci.gsas.GSASIIlattice.test3()¶
test invcell2Gmat
- schrodinger.application.matsci.gsas.GSASIIlattice.test4()¶
test calc_rVsq, calc_rV, calc_V
- schrodinger.application.matsci.gsas.GSASIIlattice.test5()¶
test A2invcell
- schrodinger.application.matsci.gsas.GSASIIlattice.test6()¶
test cell2AB
- schrodinger.application.matsci.gsas.GSASIIlattice.test7()¶
test GetBraviasNum(…) and GenHBravais(…)
- schrodinger.application.matsci.gsas.GSASIIlattice.test8()¶
test GenHLaue
- schrodinger.application.matsci.gsas.GSASIIlattice.test9()¶
test GenHLaue