schrodinger.application.desmond.replica_dE module¶
- class schrodinger.application.desmond.replica_dE.replica_energy(rep_number, filename=None, de_array=None)¶
Bases:
object
- __init__(rep_number, filename=None, de_array=None)¶
- getNumber()¶
- getRMin()¶
- getRMax()¶
- getFMin()¶
- getFMax()¶
- getRMean()¶
- getFMean()¶
- getRHistogram(his_min, his_max, nbins)¶
- getFHistogram(his_min, his_max, nbins)¶
- class schrodinger.application.desmond.replica_dE.replica_container(basename, energy_output, de_array: Optional[numpy.ndarray] = None, task_type=None, n_win=12)¶
Bases:
object
- __init__(basename, energy_output, de_array: Optional[numpy.ndarray] = None, task_type=None, n_win=12)¶
- read_dE_Replicas()¶
- getReplica(number)¶
- get_nrep()¶
- printInfo()¶
- export()¶
- process_bennett_log(data)¶
- export_dE_data(data, bennett_dG, bennett_per_replica)¶
- class schrodinger.application.desmond.replica_dE.replicas_monitor(basename, cfg, task_type)¶
Bases:
object
- __init__(basename, cfg, task_type)¶
- get_histogram(times, data)¶
Converts a sparse doubled-time list into a count of the time that each replica spends in each state.
- Parameters
times (numpy array of floats) – Time series
data (numpy array of int) – State the replica was in at each time point
- Returns
Counts of occurence in each state
- Return type
numpy array of int
Note: the precision of the time in the logfile can be lower than the exchange frequency and thus result in small rounding errors when computing duration. This should be resolved by dividing by the interval and rounding.
- get_nrep()¶
- export()¶