schrodinger.application.desmond.enhanced_sampling.mexpParser module¶
- class schrodinger.application.desmond.enhanced_sampling.mexpParser.mexpParser(input, state=None, *args, **kwargs)¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.Parser
- grammarFileName = 'mexp.g'¶
- antlr_version = (3, 1, 3, 9223372036854775807)¶
- antlr_version_str = '3.1.3 Mar 18, 2009 10:09:25'¶
- tokenNames = ['<invalid>', '<EOR>', '<DOWN>', '<UP>', 'BLOCK', 'ELEM', 'ITER', 'BIND', 'SERIES', 'IF', 'VAR', 'STATIC', 'HEADER', 'PROG', 'DECL_OUTPUT', 'DECL_META', 'NAME', 'FIRST', 'INTERVAL', 'CUTOFF', 'DIM', 'INITKER', 'SEMI', 'COMMA', 'IDENT', 'POPEN', 'LIT', 'PCLOSE', 'EQ', 'STRING', 'SUBTROP', 'ADDOP', 'MULTOP', 'DIVOP', 'EXP', 'BOPEN', 'BCLOSE', 'COPEN', 'CCLOSE', 'COLON', 'DIGIT', 'ALPHA', 'COMMENT', 'NEWLINE', 'WS', "'static'", "'declare_output'", "'declare_meta'", "'name'", "'first'", "'inf'", "'interval'", "'cutoff'", "'dimension'", "'initial'", "'series'", "'if'", "'then'", "'else'"]¶
- __init__(input, state=None, *args, **kwargs)¶
- getTreeAdaptor()¶
- setTreeAdaptor(adaptor)¶
- property adaptor¶
- reportError(err)¶
Report a recognition problem.
This method sets errorRecovery to indicate the parser is recovering not parsing. Once in recovery mode, no errors are generated. To get out of recovery mode, the parser must successfully match a token (after a resync). So it will go:
error occurs
enter recovery mode, report error
consume until token found in resynch set
try to resume parsing
next match() will reset errorRecovery mode
If you override, make sure to update syntaxErrors if you care about that.
- class prog_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- prog()¶
- class header_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- header()¶
- class decl_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- decl()¶
- class static_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- static()¶
- class varWithType_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- varWithType()¶
- class decl_output_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- decl_output()¶
- class decl_meta_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- decl_meta()¶
- class output_term_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- output_term()¶
- class meta_term_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- meta_term()¶
- class block_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- block()¶
- class exprOrBind_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- exprOrBind()¶
- class bind_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- bind()¶
- class expr_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- expr()¶
- class factor_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- factor()¶
- class signedExpComp_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- signedExpComp()¶
- class expComp_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- expComp()¶
- class comp_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- comp()¶
- class fcnCall_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- fcnCall()¶
- class atom_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- atom()¶
- class series_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- series()¶
- class if__return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- if_()¶
- class iter_return¶
Bases:
schrodinger.application.desmond.antlr3.recognizers.ParserRuleReturnScope
- __init__()¶
- getStart()¶
Return the start token or tree.
- getStop()¶
Return the stop token or tree.
- getTemplate()¶
Has a value potentially if output=template.
- getTree()¶
Has a value potentially if output=AST.
- iter()¶
- DFA1_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA1_eof = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA1_min = [24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA1_max = [56, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA1_accept = [-1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1]¶
- DFA1_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA1_transition = [[1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 10, 10, 10, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA1(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA15_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_eof = [2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_min = [22, 24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_max = [38, 56, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_accept = [-1, -1, 2, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA15_transition = [[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2], [4, 4, 4, -1, -1, 4, 4, 4, -1, -1, -1, -1, -1, 4, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, 4], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA15(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA17_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_eof = [-1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_min = [24, -1, -1, -1, -1, 22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_max = [56, -1, -1, -1, -1, 38, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_accept = [-1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA17_transition = [[5, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [1, -1, -1, 1, -1, -1, 11, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA17(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA18_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA18_eof = [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA18_min = [22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA18_max = [58, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA18_accept = [-1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1]¶
- DFA18_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA18_transition = [[1, 1, -1, -1, -1, 1, -1, -1, 10, 10, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA18(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA19_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA19_eof = [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA19_min = [22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA19_max = [58, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA19_accept = [-1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1]¶
- DFA19_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA19_transition = [[1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 10, 10, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA19(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA20_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA20_eof = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA20_min = [24, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA20_max = [56, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA20_accept = [-1, 1, 2, 3, -1, -1, -1, -1, -1, -1]¶
- DFA20_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA20_transition = [[3, 3, 3, -1, -1, 3, 2, 1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3], [], [], [], [], [], [], [], [], []]¶
- class DFA20(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA21_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_eof = [2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_min = [22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_max = [58, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_accept = [-1, 1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA21_transition = [[2, 2, -1, -1, -1, 2, -1, -1, 2, 2, 2, 2, 1, 2, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA21(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA22_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA22_eof = [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA22_min = [22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA22_max = [58, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA22_accept = [-1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1]¶
- DFA22_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA22_transition = [[1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 10, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA22(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA24_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA24_eof = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA24_min = [24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA24_max = [56, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA24_accept = [-1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 2]¶
- DFA24_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA24_transition = [[1, 1, 1, 10, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [], [], [], [], [], [], [], [], [], []]¶
- class DFA24(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- DFA25_eot = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_eof = [-1, -1, -1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_min = [24, -1, -1, 22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_max = [56, -1, -1, 58, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_accept = [-1, 1, 2, -1, 4, 6, 7, 8, 3, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_special = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]¶
- DFA25_transition = [[3, 6, 5, -1, -1, 4, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 2], [], [], [9, 9, -1, 8, -1, 9, -1, -1, 9, 9, 9, 9, 9, 9, 9, -1, 9, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9, 9], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []]¶
- class DFA25(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
Bases:
schrodinger.application.desmond.antlr3.dfa.DFA
- __init__(recognizer, decisionNumber, eot, eof, min, max, accept, special, transition)¶
- error(nvae)¶
A hook for debugging interface
- getDescription()¶
- noViableAlt(s, input)¶
- predict(input)¶
From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error.
- specialStateTransition(s, input)¶
- classmethod unpack(string)¶
@brief Unpack the runlength encoded table data.
Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers.
Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm.
- FOLLOW_header_in_prog158 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_block_in_prog160 = frozenset({})¶
- FOLLOW_EOF_in_prog162 = frozenset({1})¶
- FOLLOW_decl_in_header191 = frozenset({22})¶
- FOLLOW_SEMI_in_header193 = frozenset({1, 45, 46, 47})¶
- FOLLOW_decl_meta_in_decl222 = frozenset({1})¶
- FOLLOW_decl_output_in_decl226 = frozenset({1})¶
- FOLLOW_static_in_decl230 = frozenset({1})¶
- FOLLOW_45_in_static244 = frozenset({24})¶
- FOLLOW_varWithType_in_static248 = frozenset({1, 23})¶
- FOLLOW_COMMA_in_static251 = frozenset({24})¶
- FOLLOW_varWithType_in_static255 = frozenset({1, 23})¶
- FOLLOW_IDENT_in_varWithType272 = frozenset({25})¶
- FOLLOW_POPEN_in_varWithType274 = frozenset({26})¶
- FOLLOW_LIT_in_varWithType276 = frozenset({27})¶
- FOLLOW_PCLOSE_in_varWithType278 = frozenset({1})¶
- FOLLOW_46_in_decl_output296 = frozenset({25})¶
- FOLLOW_POPEN_in_decl_output298 = frozenset({48, 49, 51})¶
- FOLLOW_output_term_in_decl_output302 = frozenset({23, 27})¶
- FOLLOW_COMMA_in_decl_output305 = frozenset({48, 49, 51})¶
- FOLLOW_output_term_in_decl_output309 = frozenset({23, 27})¶
- FOLLOW_PCLOSE_in_decl_output313 = frozenset({1})¶
- FOLLOW_47_in_decl_meta349 = frozenset({25})¶
- FOLLOW_POPEN_in_decl_meta351 = frozenset({48, 49, 51, 52, 53, 54})¶
- FOLLOW_meta_term_in_decl_meta355 = frozenset({23, 27})¶
- FOLLOW_COMMA_in_decl_meta358 = frozenset({48, 49, 51, 52, 53, 54})¶
- FOLLOW_meta_term_in_decl_meta362 = frozenset({23, 27})¶
- FOLLOW_PCLOSE_in_decl_meta366 = frozenset({1})¶
- FOLLOW_48_in_output_term404 = frozenset({28})¶
- FOLLOW_EQ_in_output_term412 = frozenset({29})¶
- FOLLOW_STRING_in_output_term426 = frozenset({1})¶
- FOLLOW_49_in_output_term476 = frozenset({28})¶
- FOLLOW_EQ_in_output_term483 = frozenset({26, 30, 50})¶
- FOLLOW_SUBTROP_in_output_term487 = frozenset({26, 50})¶
- FOLLOW_50_in_output_term493 = frozenset({1})¶
- FOLLOW_LIT_in_output_term499 = frozenset({1})¶
- FOLLOW_51_in_output_term536 = frozenset({28})¶
- FOLLOW_EQ_in_output_term540 = frozenset({26, 50})¶
- FOLLOW_50_in_output_term557 = frozenset({1})¶
- FOLLOW_LIT_in_output_term563 = frozenset({1})¶
- FOLLOW_48_in_meta_term592 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term600 = frozenset({29})¶
- FOLLOW_STRING_in_meta_term614 = frozenset({1})¶
- FOLLOW_49_in_meta_term664 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term671 = frozenset({26, 30, 50})¶
- FOLLOW_SUBTROP_in_meta_term675 = frozenset({26, 50})¶
- FOLLOW_50_in_meta_term681 = frozenset({1})¶
- FOLLOW_LIT_in_meta_term687 = frozenset({1})¶
- FOLLOW_51_in_meta_term724 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term728 = frozenset({26, 50})¶
- FOLLOW_50_in_meta_term745 = frozenset({1})¶
- FOLLOW_LIT_in_meta_term751 = frozenset({1})¶
- FOLLOW_52_in_meta_term786 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term792 = frozenset({26, 50})¶
- FOLLOW_50_in_meta_term809 = frozenset({1})¶
- FOLLOW_LIT_in_meta_term815 = frozenset({1})¶
- FOLLOW_53_in_meta_term852 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term855 = frozenset({26})¶
- FOLLOW_LIT_in_meta_term869 = frozenset({1})¶
- FOLLOW_54_in_meta_term922 = frozenset({28})¶
- FOLLOW_EQ_in_meta_term927 = frozenset({29})¶
- FOLLOW_STRING_in_meta_term941 = frozenset({1})¶
- FOLLOW_exprOrBind_in_block980 = frozenset({1, 22})¶
- FOLLOW_SEMI_in_block983 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_exprOrBind_in_block987 = frozenset({1, 22})¶
- FOLLOW_SEMI_in_block991 = frozenset({1})¶
- FOLLOW_expr_in_exprOrBind1013 = frozenset({1})¶
- FOLLOW_bind_in_exprOrBind1017 = frozenset({1})¶
- FOLLOW_IDENT_in_bind1027 = frozenset({28})¶
- FOLLOW_EQ_in_bind1029 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_bind1033 = frozenset({1})¶
- FOLLOW_factor_in_expr1057 = frozenset({1, 30, 31})¶
- FOLLOW_set_in_expr1061 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_factor_in_expr1070 = frozenset({1, 30, 31})¶
- FOLLOW_signedExpComp_in_factor1081 = frozenset({1, 32, 33})¶
- FOLLOW_set_in_factor1086 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_signedExpComp_in_factor1096 = frozenset({1, 32, 33})¶
- FOLLOW_ADDOP_in_signedExpComp1111 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_SUBTROP_in_signedExpComp1116 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expComp_in_signedExpComp1121 = frozenset({1})¶
- FOLLOW_comp_in_expComp1129 = frozenset({1, 34})¶
- FOLLOW_EXP_in_expComp1132 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_signedExpComp_in_expComp1135 = frozenset({1})¶
- FOLLOW_atom_in_comp1149 = frozenset({1, 35})¶
- FOLLOW_BOPEN_in_comp1152 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_comp1156 = frozenset({36})¶
- FOLLOW_BCLOSE_in_comp1158 = frozenset({1, 35})¶
- FOLLOW_IDENT_in_fcnCall1182 = frozenset({25})¶
- FOLLOW_POPEN_in_fcnCall1185 = frozenset({24, 25, 26, 27, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_fcnCall1189 = frozenset({23, 27})¶
- FOLLOW_COMMA_in_fcnCall1192 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_fcnCall1195 = frozenset({23, 27})¶
- FOLLOW_PCLOSE_in_fcnCall1201 = frozenset({1})¶
- FOLLOW_series_in_atom1229 = frozenset({1})¶
- FOLLOW_if__in_atom1248 = frozenset({1})¶
- FOLLOW_fcnCall_in_atom1267 = frozenset({1})¶
- FOLLOW_STRING_in_atom1286 = frozenset({1})¶
- FOLLOW_IDENT_in_atom1304 = frozenset({1})¶
- FOLLOW_LIT_in_atom1332 = frozenset({1})¶
- FOLLOW_POPEN_in_atom1351 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_atom1354 = frozenset({27})¶
- FOLLOW_PCLOSE_in_atom1356 = frozenset({1})¶
- FOLLOW_COPEN_in_atom1376 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_block_in_atom1379 = frozenset({38})¶
- FOLLOW_CCLOSE_in_atom1381 = frozenset({1})¶
- FOLLOW_55_in_series1392 = frozenset({25})¶
- FOLLOW_POPEN_in_series1394 = frozenset({24})¶
- FOLLOW_iter_in_series1398 = frozenset({23, 27})¶
- FOLLOW_COMMA_in_series1401 = frozenset({24})¶
- FOLLOW_iter_in_series1405 = frozenset({23, 27})¶
- FOLLOW_PCLOSE_in_series1409 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_series1413 = frozenset({1})¶
- FOLLOW_56_in_if_1436 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_if_1440 = frozenset({57})¶
- FOLLOW_57_in_if_1442 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_if_1446 = frozenset({58})¶
- FOLLOW_58_in_if_1448 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_if_1452 = frozenset({1})¶
- FOLLOW_IDENT_in_iter1476 = frozenset({28})¶
- FOLLOW_EQ_in_iter1478 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_iter1482 = frozenset({39})¶
- FOLLOW_COLON_in_iter1484 = frozenset({24, 25, 26, 29, 30, 31, 37, 55, 56})¶
- FOLLOW_expr_in_iter1488 = frozenset({1})¶
- DEFAULT_TOKEN_CHANNEL = 0¶
- HIDDEN = 99¶
- MEMO_RULE_FAILED = -2¶
- MEMO_RULE_UNKNOWN = -1¶
- alreadyParsedRule(input, ruleIndex)¶
Has this rule already parsed input at the current index in the input stream? Return the stop token index or MEMO_RULE_UNKNOWN. If we attempted but failed to parse properly before, return MEMO_RULE_FAILED.
This method has a side-effect: if we have seen this input for this rule and successfully parsed before, then seek ahead to 1 past the stop token matched for this rule last time.
- beginResync()¶
A hook to listen in on the token consumption during error recovery. The DebugParser subclasses this to fire events to the listenter.
- combineFollows(exact)¶
- computeContextSensitiveRuleFOLLOW()¶
Compute the context-sensitive FOLLOW set for current rule. This is set of token types that can follow a specific rule reference given a specific call chain. You get the set of viable tokens that can possibly come next (lookahead depth 1) given the current call chain. Contrast this with the definition of plain FOLLOW for rule r:
FOLLOW(r)={x | S=>*alpha r beta in G and x in FIRST(beta)}
where x in T* and alpha, beta in V*; T is set of terminals and V is the set of terminals and nonterminals. In other words, FOLLOW(r) is the set of all tokens that can possibly follow references to r in any sentential form (context). At runtime, however, we know precisely which context applies as we have the call chain. We may compute the exact (rather than covering superset) set of following tokens.
For example, consider grammar:
stat : ID '=' expr ';' // FOLLOW(stat)=={EOF} | "return" expr '.' ; expr : atom ('+' atom)* ; // FOLLOW(expr)=={';','.',')'} atom : INT // FOLLOW(atom)=={'+',')',';','.'} | '(' expr ')' ;
The FOLLOW sets are all inclusive whereas context-sensitive FOLLOW sets are precisely what could follow a rule reference. For input input “i=(3);”, here is the derivation:
- stat => ID ‘=’ expr ‘;’
=> ID ‘=’ atom (‘+’ atom)* ‘;’ => ID ‘=’ ‘(’ expr ‘)’ (‘+’ atom)* ‘;’ => ID ‘=’ ‘(’ atom ‘)’ (‘+’ atom)* ‘;’ => ID ‘=’ ‘(’ INT ‘)’ (‘+’ atom)* ‘;’ => ID ‘=’ ‘(’ INT ‘)’ ‘;’
At the “3” token, you’d have a call chain of
stat -> expr -> atom -> expr -> atom
What can follow that specific nested ref to atom? Exactly ‘)’ as you can see by looking at the derivation of this specific input. Contrast this with the FOLLOW(atom)={‘+’,’)’,’;’,’.’}.
You want the exact viable token set when recovering from a token mismatch. Upon token mismatch, if LA(1) is member of the viable next token set, then you know there is most likely a missing token in the input stream. “Insert” one by just not throwing an exception.
- computeErrorRecoverySet()¶
Compute the error recovery set for the current rule. During rule invocation, the parser pushes the set of tokens that can follow that rule reference on the stack; this amounts to computing FIRST of what follows the rule reference in the enclosing rule. This local follow set only includes tokens from within the rule; i.e., the FIRST computation done by ANTLR stops at the end of a rule.
EXAMPLE
When you find a “no viable alt exception”, the input is not consistent with any of the alternatives for rule r. The best thing to do is to consume tokens until you see something that can legally follow a call to r or any rule that called r. You don’t want the exact set of viable next tokens because the input might just be missing a token–you might consume the rest of the input looking for one of the missing tokens.
Consider grammar:
a : '[' b ']' | '(' b ')' ; b : c '^' INT ; c : ID | INT ;
At each rule invocation, the set of tokens that could follow that rule is pushed on a stack. Here are the various “local” follow sets:
FOLLOW(b1_in_a) = FIRST(‘]’) = ‘]’ FOLLOW(b2_in_a) = FIRST(‘)’) = ‘)’ FOLLOW(c_in_b) = FIRST(‘^’) = ‘^’
Upon erroneous input “[]”, the call chain is
a -> b -> c
and, hence, the follow context stack is:
- depth local follow set after call to rule
0 <EOF> a (from main()) 1 ‘]’ b 3 ‘^’ c
Notice that ‘)’ is not included, because b would have to have been called from a different context in rule a for ‘)’ to be included.
For error recovery, we cannot consider FOLLOW(c) (context-sensitive or otherwise). We need the combined set of all context-sensitive FOLLOW sets–the set of all tokens that could follow any reference in the call chain. We need to resync to one of those tokens. Note that FOLLOW(c)=’^’ and if we resync’d to that token, we’d consume until EOF. We need to sync to context-sensitive FOLLOWs for a, b, and c: {‘]’,’^’}. In this case, for input “[]”, LA(1) is in this set so we would not consume anything and after printing an error rule c would return normally. It would not find the required ‘^’ though. At this point, it gets a mismatched token error and throws an exception (since LA(1) is not in the viable following token set). The rule exception handler tries to recover, but finds the same recovery set and doesn’t consume anything. Rule b exits normally returning to rule a. Now it finds the ‘]’ (and with the successful match exits errorRecovery mode).
So, you cna see that the parser walks up call chain looking for the token that was a member of the recovery set.
Errors are not generated in errorRecovery mode.
ANTLR’s error recovery mechanism is based upon original ideas:
“Algorithms + Data Structures = Programs” by Niklaus Wirth
and
“A note on error recovery in recursive descent parsers”: http://portal.acm.org/citation.cfm?id=947902.947905
Later, Josef Grosch had some good ideas:
“Efficient and Comfortable Error Recovery in Recursive Descent Parsers”: ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip
Like Grosch I implemented local FOLLOW sets that are combined at run-time upon error to avoid overhead during parsing.
- consumeUntil(input, tokenTypes)¶
Consume tokens until one matches the given token or token set
tokenTypes can be a single token type or a set of token types
- displayRecognitionError(tokenNames, e)¶
- emitErrorMessage(msg)¶
Override this method to change where error messages go
- endResync()¶
A hook to listen in on the token consumption during error recovery. The DebugParser subclasses this to fire events to the listenter.
- failed()¶
Return whether or not a backtracking attempt failed.
- getBacktrackingLevel()¶
- getCurrentInputSymbol(input)¶
Match needs to return the current input symbol, which gets put into the label for the associated token ref; e.g., x=ID. Token and tree parsers need to return different objects. Rather than test for input stream type or change the IntStream interface, I use a simple method to ask the recognizer to tell me what the current input symbol is.
This is ignored for lexers.
- getErrorHeader(e)¶
What is the error header, normally line/character position information?
- getErrorMessage(e, tokenNames)¶
What error message should be generated for the various exception types?
Not very object-oriented code, but I like having all error message generation within one method rather than spread among all of the exception classes. This also makes it much easier for the exception handling because the exception classes do not have to have pointers back to this object to access utility routines and so on. Also, changing the message for an exception type would be difficult because you would have to subclassing exception, but then somehow get ANTLR to make those kinds of exception objects instead of the default. This looks weird, but trust me–it makes the most sense in terms of flexibility.
For grammar debugging, you will want to override this to add more information such as the stack frame with getRuleInvocationStack(e, this.getClass().getName()) and, for no viable alts, the decision description and state etc…
Override this to change the message generated for one or more exception types.
- getGrammarFileName()¶
For debugging and other purposes, might want the grammar name.
Have ANTLR generate an implementation for this method.
- getMissingSymbol(input, e, expectedTokenType, follow)¶
Conjure up a missing token during error recovery.
The recognizer attempts to recover from single missing symbols. But, actions might refer to that missing symbol. For example, x=ID {f($x);}. The action clearly assumes that there has been an identifier matched previously and that $x points at that token. If that token is missing, but the next token in the stream is what we want we assume that this token is missing and we keep going. Because we have to return some token to replace the missing token, we have to conjure one up. This method gives the user control over the tokens returned for missing tokens. Mostly, you will want to create something special for identifier tokens. For literals such as ‘{’ and ‘,’, the default action in the parser or tree parser works. It simply creates a CommonToken of the appropriate type. The text will be the token. If you change what tokens must be created by the lexer, override this method to create the appropriate tokens.
- getNumberOfSyntaxErrors()¶
Get number of recognition errors (lexer, parser, tree parser). Each recognizer tracks its own number. So parser and lexer each have separate count. Does not count the spurious errors found between an error and next valid token match
See also reportError()
- getRuleInvocationStack()¶
Return List<String> of the rules in your parser instance leading up to a call to this method. You could override if you want more details such as the file/line info of where in the parser java code a rule is invoked.
This is very useful for error messages and for context-sensitive error recovery.
You must be careful, if you subclass a generated recognizers. The default implementation will only search the module of self for rules, but the subclass will not contain any rules. You probably want to override this method to look like
- def getRuleInvocationStack(self):
return self._getRuleInvocationStack(<class>.__module__)
where <class> is the class of the generated recognizer, e.g. the superclass of self.
- getRuleMemoization(ruleIndex, ruleStartIndex)¶
Given a rule number and a start token index number, return MEMO_RULE_UNKNOWN if the rule has not parsed input starting from start index. If this rule has parsed input starting from the start index before, then return where the rule stopped parsing. It returns the index of the last token matched by the rule.
- getSourceName()¶
- getTokenErrorDisplay(t)¶
How should a token be displayed in an error message? The default is to display just the text, but during development you might want to have a lot of information spit out. Override in that case to use t.toString() (which, for CommonToken, dumps everything about the token). This is better than forcing you to override a method in your token objects because you don’t have to go modify your lexer so that it creates a new Java type.
- getTokenStream()¶
- match(input, ttype, follow)¶
Match current input symbol against ttype. Attempt single token insertion or deletion error recovery. If that fails, throw MismatchedTokenException.
To turn off single token insertion or deletion error recovery, override recoverFromMismatchedToken() and have it throw an exception. See TreeParser.recoverFromMismatchedToken(). This way any error in a rule will cause an exception and immediate exit from rule. Rule would recover by resynchronizing to the set of symbols that can follow rule ref.
- matchAny(input)¶
Match the wildcard: in a symbol
- memoize(input, ruleIndex, ruleStartIndex, success)¶
Record whether or not this rule parsed the input at this position successfully.
- mismatchIsMissingToken(input, follow)¶
- mismatchIsUnwantedToken(input, ttype)¶
- recover(input, re)¶
Recover from an error found on the input stream. This is for NoViableAlt and mismatched symbol exceptions. If you enable single token insertion and deletion, this will usually not handle mismatched symbol exceptions but there could be a mismatched token that the match() routine could not recover from.
- recoverFromMismatchedSet(input, e, follow)¶
Not currently used
- recoverFromMismatchedToken(input, ttype, follow)¶
Attempt to recover from a single missing or extra token.
EXTRA TOKEN
LA(1) is not what we are looking for. If LA(2) has the right token, however, then assume LA(1) is some extra spurious token. Delete it and LA(2) as if we were doing a normal match(), which advances the input.
MISSING TOKEN
If current token is consistent with what could come after ttype then it is ok to ‘insert’ the missing token, else throw exception For example, Input ‘i=(3;’ is clearly missing the ‘)’. When the parser returns from the nested call to expr, it will have call chain:
stat -> expr -> atom
and it will be trying to match the ‘)’ at this point in the derivation:
=> ID '=' '(' INT ')' ('+' atom)* ';' ^
match() will see that
';'
doesn’t match')'
and report a mismatched token error. To recover, it sees thatLA(1)==';'
is in the set of tokens that can follow the')'
token reference in rule atom. It can assume that you forgot the')'.
- reset()¶
reset the parser’s state; subclasses must rewinds the input stream
- setBacktrackingLevel(n)¶
- setInput(input)¶
- setTokenStream(input)¶
Set the token stream and reset the parser
- toStrings(tokens)¶
A convenience method for use most often with template rewrites.
Convert a List<Token> to List<String>
- traceIn(ruleName, ruleIndex)¶
- traceOut(ruleName, ruleIndex)¶
- schrodinger.application.desmond.enhanced_sampling.mexpParser.main(argv, stdin=<_io.TextIOWrapper name=17 mode='r' encoding='UTF-8'>, stdout=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, stderr=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='utf-8'>)¶