schrodinger.application.desmond.packages.staf module¶
Simulation Trajectory Analysis Framework (STAF)
Copyright Schrodinger, LLC. All rights reserved.
- class schrodinger.application.desmond.packages.staf.GeomAnalyzerBase(*args, **kwargs)¶
Bases:
objectBase class of all geometry analyzer classes
At this level, we make a distinction of two types of analyzers: static and dynamic analyzers, which we call staalyzers and dynalyzers, respectively.
A dynamic analyzer (or dynalyzer) redefines its calculations from frame to frame, typically due to atom selection change, i.e., dynamic ASL.
Generally speaking, any analyses where the exact types and/or quantities of calculations depend on the dynamics of the simulation system will fall into the conceptual regime of dynamic analyzer.
A static analyzer (or staalyzer) is the opposite. The exact types and/or quantities of calculations are predefined and doesn’t depend on the coordinates of the particles.
Also we regard dynamic analyzer as the more general concept. This means that a static analyzer is a dynamic analyzer with trivial (nil) dependency on the coordinates.
All subclasses should define two private methods:
_precalcThis method will be called by a
GeomCalcobject to register geometry calculations.
_postcalcThis method will be called by a
GeomCalcobject to finish the particular analysis calculation. And the results should are saved in theself._result
In between the
_precalcand_postcalccalls, theGeomCalcobject will be called (outside the analyzer class) to calculate all requested geometry calculation frame by frame. Also see the docstring of theanalysis.analyzefunction.For dynalyzers, the subclass is expected to define one more private method:
_dyncalcThis method will be called by a
GeomCalcobject to register geometry calculations for each trajectory frame.
- __init__(is_dynamic=False)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- schrodinger.application.desmond.packages.staf.center_fr(data, pbc, fr, custom)¶
This function will copy the input trajectory frame (
fr), and center the selected particles in the copy.- Returns
Updated
data, where values are updated for the givenfr.
- schrodinger.application.desmond.packages.staf.center_ct(data, pbc, fr, custom)¶
Center selected particles in the simulation box, and it will automatically make all molecules whole. This function will create a centered frame and a copy of the full system CT from the centered frame.
Caveat:
center_frshould have been called on the same key and frame. This is an implicit coupling (bad) between the two functions.- Returns
Updated
data, where values are updated for the givenfr.
- schrodinger.application.desmond.packages.staf.center_fr_along_z(data, pbc, fr, custom)¶
This function will copy the input trajectory frame (
fr), and center the selected particles along the Z-axis in the copy.- Returns
Updated
data, where values are updated for the givenfr.
- class schrodinger.application.desmond.packages.staf.CenteredSoluteAnalysis(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseThis class provides a temporary trajectory frame where the solute atoms are centered. It helps resolve PBC wrapping issues for analyzers such as
analysis.RMSD,analysis.PosAlign.- __init__(msys_model, cms_model, *arg, asl_center='solute', asl_exclude='ions or water or metals', **kwarg)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.MaestroAnalysis(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.CenteredSoluteAnalysisAnalyzer classes that perform calculations on the solute-centered full-system CT could inherit this base class.
- __init__(msys_model, cms_model, *arg, asl_center='solute', asl_exclude='ions or water or metals', **kwarg)¶
- Parameters
asl_center – ASL for the atoms to be centered
asl_exclude – ASL for the atoms to be excluded from centering. For example, ASL ‘protein’ could select ion and water molecules which may be too mobile for the centering.
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.CustomMaestroAnalysis(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.MaestroAnalysisCompute the result of a custom function on centered models. Under the hood, this custom function serves as a CID for
_CustomCalc. The same key ofMaestroAnalysisis used, and the value is a tuple of the custom function’s return and the centered fullsystem CT.- __init__(msys_model, cms_model, func)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.CompositeAnalyzer(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseA composite analyzer calls one or more other analyzers (subanalyzers) to obtain (intermediate) results. The subclass should define the subanalyzers as a private attribute:
_analyzers, whose value should be a list of analyzers.- __init__(is_dynamic=False)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.UpdatedCmsFsysCtAnalysis(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.GeomAnalyzerBaseThis class updates the full system CT inside the Cms object to each trajectory frame.
N.B.: Typically all analyzers share the same Cms object, thus the existence of an instance of this class has side effect on other analyzers (This side effect is probably wanted).
- __init__(msys_model, cms_model, *arg, **kwarg)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.DynamicPositerAnalyzer(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.UpdatedCmsFsysCtAnalysisThis analyzer uses (dynamic) atom selection to create
Positerfor each frame.- __init__(msys_model, cms_model, asl, initializer)¶
- Parameters
initializer (callable) – It takes three input arguments (
msys_model,cms_model, and alistof AIDs) and returns aPositerinstance.
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.DynamicAslAnalyzer(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.UpdatedCmsFsysCtAnalysisA base class for all analyzers that support dynamic ASL expressions. It guarantees to update the atom IDs from the given ASL expression for each frame and store the atom IDs into a private attribute
_aids.This class defines the private method
_dyncalcto be called by theGeomCalcobject. This class expects its subclass to define a_dyninit(self)' method to be automatically called by the `_dyncalcmethod after the_aidshas been updated. The subclass’_dyninitmethod should redefine the geometry calculations based on the updated atom IDs and will be called by both the__init__and the_dyncalcmethods of this class.- __init__(msys_model, cms_model, asl)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.CompositeDynamicAslAnalyzer(*args, **kwargs)¶
Bases:
schrodinger.application.desmond.packages.staf.DynamicAslAnalyzer,schrodinger.application.desmond.packages.staf.CompositeAnalyzerA base class for analyzers whose ALL subanalyzers are redefined for each frame based on the results of the dynamic ASL expression. The redefinition of subanalyzers are done by the analyzer’s
_dyninitmethod (see docstring ofDynamicAslAnalyzer), which will be automatically called by theDynamicAslAnalyzer._dyncalcmethod (see docstring ofDynamicAslAnalyzerfor more detail).- __init__(msys_model, cms_model, asl)¶
- disableDyncalc()¶
Disable the execution of _dyncalc(). This is used to avoid redundant _precalc() calculations delegated in _dyncalc().
- isDynamic()¶
- class schrodinger.application.desmond.packages.staf.Positer(analyzers, num_pos)¶
Bases:
objectThis class appends analyzers’ results to trajectory frames. The prominent application is to treat
Com,Coc, orCentroidanalyzers as composite “atoms” with GIDs, which enables geometric calculations among both regular atoms and composite “atoms”.- __init__(analyzers, num_pos)¶
- Parameters
analyzers (
list. Each element can be an analyzer, for example, aCom, orCoc, orCentroidobject.) – A list of analyzers. Each analyzer will return a new position.
- setGidOffset(gid_offset)¶
- Parameters
gid_offset (
int) – The GID of the first position added by this positer will be natoms + gid_offset, where natoms is the number of interaction sites in the original model system.
- numPos()¶
- Return type
int- Returns
The number of new positions to be added into the position array of the given frame.
- gids()¶
- Return type
listofintobjects- Returns
The GIDs of the new positions to be added.
- class schrodinger.application.desmond.packages.staf.GeomCalc¶
Bases:
objectWe use this class to batch geometry calculations and avoid duplications. For example, you want to calculate the bond distance between atoms 1 and 2, and also an dihedral angle involving these two atoms. Both calculations require to calculate the vector between the minimum images of the two atoms, but we don’t want to do the calculation twice. With this class, we avoid such duplications.
All geometry calculations take into account the periodic boundary condition.
Basic usage:
calc = GeomCalc()
# Loads geometry-calculation requests. calc.addVector(…) calc.addDistance(…) calc.addAngle(…) calc.addTorsion(…) calc.addPlanarAngle(…) calc.addFittedPlanarAngle(…)
# Does calculations. calc(pbc, frame)
# Gets results. vec = calc.getVector(…) dis = calc.getDistance(…) ang = calc.getAngle(…) dih = calc.getTorsion(…) pla = calc.getPlanarAngle(…) fit = calc.getFittedPlanarAngle(…)
- __init__()¶
- addPosition(positer, num_pos, is_dynamic=False)¶
Add extra position into the position array.
- Parameters
positer (Callable, will be called as:
positer(pbc, fr), wherepbcis aPbcobject, andfris atraj.Frameobject.) – Function (or callable object) to append new positions into the position array of the given frame.num_pos (
int, must be a nonnegative number.) – The number of new positions to be added bypositer
- Return type
int- Returns
The gid offset of the first new position that will be generated by this
positer.
- addVector(from_gid, to_gid)¶
Add a vector calculation request.
- addDistance(i_gid, j_gid)¶
Add a distance calculation request.
- addAngle(i_gid, j_gid, k_gid)¶
Add an angle calculation request.
The angle is defined by the two vectors: j==>i and j==>k.
- addTorsion(i_gid, j_gid, k_gid, l_gid)¶
Add a torsion calculation request.
The torsion is defined by the four position vectors:
i o o l \ / \ / j o-----o k
In other words, it’s the dihedral angle between the two planes: i-j-k and j-k-l.
- addPlanarAngle(i_gid, j_gid, k_gid, l_gid, m_gid, n_gid)¶
Add a planar angle calculation request. The first three gids define the first plane and the second gids define the second plane.
- addFittedPlanarAngle(i_gids: List[int], j_gids: List[int])¶
Add a fitted planar angle calculation request. The first list of gids defines the first group of atoms and the second list of gids defines the second group, for each of which a best-fitting plane is calculated.
- Parameters
_gids – The gids defining each group of atoms
- addCustom(cid, key=None, default=None)¶
Add a custom calculation item.
- Parameters
cid (Any hashable object) – Specify the type of the calculation. The results of this type of calculation can be obtained by calling
getCustom(c).key (Any hashable object) – A particular calculation item of the type
c. The result of this item can be obtained by this:getCustom(c)[key].default – The default result of the calculation item
key.
- addAnalyzer(analyzer)¶
Add a custom analyzer that must define the following interface:
_precalc(self, calc) where
calcis aGeomCalcobject. This method should callcalc.addCustomto add an calculation item of a custom calculation type._postcalc(self, calc, pbc, fr) where
calcis aGeomCalcobject,pbcis aPbcobject, andfris atraj.Frameobject. This method can get the calculation result by callingcalc.getCustomand do further calculations as necessary to get the final analytic results.
- getVector(from_gid, to_gid)¶
Get the vector between the atoms:
from_gidandto_gid.
- getDistance(i_gid, j_gid)¶
Get the distance (in Angstroms) between the atoms:
i_gidandj_gid.
- getAngle(i_gid, j_gid, k_gid)¶
Get the angle (in radians) between the two vectors: j==>i and j==>k.
- getTorsion(i_gid, j_gid, k_gid, l_gid)¶
Get the torsion (in radians) as defined by the four atoms:
i_gid,j_gid,k_gid, andl_gid. See the docstring ofaddTorsionfor more detail.
- getPlanarAngle(i_gid, j_gid, k_gid, l_gid, m_gid, n_gid)¶
Get the planar angle (in radians) as defined by the six atoms:
i_gid,j_gid,k_gid,l_gid,m_gid, andn_gid. See the docstring ofaddPlanarAnglefor more detail.
- getFittedPlanarAngle(i_gids: List[int], j_gids: List[int])¶
Get the fitted planar angle (in radians) as defined by the two lists:
i_gidsandj_gids. See the docstring ofaddFittedPlanarAnglefor more detail.
- getCustom(cid)¶
Return all results of the custom calculation type
c:type cid: Any hashable object