schrodinger.application.matsci.qexsd.qespresso.utils.mapping module¶
Useful classes for building mapping structures.
- class schrodinger.application.matsci.qexsd.qespresso.utils.mapping.BiunivocalMap(*args, **kwargs)[source]¶
Bases:
collections.abc.MutableMapping
A dictionary that implements a bijective correspondence, namely with constraints of uniqueness both on keys that on values.
- getkey(value, default=None)[source]¶
If value is in dictionary’s values, return the key correspondent to the value, else return None.
- Parameters
value – Value to map
default – Default to return if the value is not in the map values
- clear() None. Remove all items from D. ¶
- get(k[, d]) D[k] if k in D, else d. d defaults to None. ¶
- items() a set-like object providing a view on D’s items ¶
- keys() a set-like object providing a view on D’s keys ¶
- pop(k[, d]) v, remove specified key and return the corresponding value. ¶
If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem() (k, v), remove and return some (key, value) pair ¶
as a 2-tuple; but raise KeyError if D is empty.
- setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D ¶
- update([E, ]**F) None. Update D from mapping/iterable E and F. ¶
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
- values() an object providing a view on D’s values ¶