"""
Framework for writing computational workflows and running them in a highly
distributed manner. Each step of the workflow is either a "mapping" operation
(see `MapStep`) or "reducing" operation (see `ReduceStep). These steps can then
be chained together using the `Chain` class.
For a more complete introduction, see WordCount tutorial:
https://confluence.schrodinger.com/display/~jtran/Stepper+WordCount+Tutorial
For documentation on specific stepper features, see the following feature list.
You can ctrl+f the feature tag to jump to the relevant docstrings.
+----------------+-------------------+
| Feature | Tag |
+================+===================+
| MapStep | _map_step_ |
+----------------+-------------------+
| ReduceStep | _reduce_step_ |
+----------------+-------------------+
| Chain | _chain_ |
+----------------+-------------------+
| Settings | _settings_ |
+----------------+-------------------+
| Serialization | _serialization_ |
+----------------+-------------------+
| File Handling | _file_handling_ |
+----------------+-------------------+
| Custom Workflow| _custom_workflows_|
+----------------+-------------------+
| Double Batching| _dbl_batching_ |
+----------------+-------------------+
#===============================================================================
# Running stepper with custom, undistributed workflows <_custom_workflows_>
#===============================================================================
To run steps that aren't defined in the core suite:
The script should be executed inside the working directory and import steps from
a local package in the working directory.
Working dir contents::
script.py
my_lib/
__init__.py
steps.py
Minimal code in script.py if it needs to run under job control::
from schrodinger.job import launchapi
from schrodinger.ui.qt.appframework2 import application
from my_lib.steps import MyStep
def get_job_spec_from_args(argv):
jsb = launchapi.JobSpecificationArgsBuilder(argv)
jsb.setInputFile(__file__)
jsb.setInputDirectory('my_lib')
return jsb.getJobSpec()
def main():
step = MyStep()
set.getOutputs()
if __name__ == '__main__':
application.run_application(main)
#===============================================================================
# Double Batching <_dbl_batching_>
#===============================================================================
Job launch speeds at the time of writing is about one job per 3 or 4 seconds.
This rate becomes insufficient once we need more than a few hundred workers.
To get around this, stepper employs a pattern we coin "double batching", where
we create subjobs whose sole purpose is to themselves create the subjobs
that actually run the steps.
NOTE:: We use double-batching for the PubSub implementation of stepper as
well as the file-based implementation. The literal meaning of "double-batching"
doesn't apply as well to the PubSub implementation but the general pattern
of launching subjobs to launch more subjobs still applies.
#===============================================================================
# Environment variables and global settings
#===============================================================================
Settings:
- SCHRODINGER_STEPPER_DEBUG
Set to 1 to have most files brought back from a workflow run.
Set to 2 to have _all_ files brought back.
- SCHRODINGER_GCP_PROJECT
Expected when running stepper with pubsub and bigquery. Should just
be a string with the GCP project name, e.g. ad-pydev-dev
- SCHRODINGER_GCP_KEY
Expected when running stepper with pubsub and bigquery. Should be
a path to the gcp service key. See
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
for more information on generating gcp service keys.
- SCHRODINGER_PUBSUB_TOPIC_PREFIX
Optional setting. If set, all topics and subscriptions created during
workflow runs will have the specified prefix added to the name. This is
useful when a cloud provider searches topics by prefix and holds no
project level separation, such as AWS.
- SCHRODINGER_PUBSUB_TOPIC_SUFFIX
Optional setting. If set, all topics and subscriptions created during
workflow runs will have the specified suffix added to the name.
This is useful for searching for all topics and subscriptions created
for a particular run.
- SCHRODINGER_GCP_DUPLICATE_SUBSCRIPTIONS
Optional debug setting. If set, whenever a subscription is created,
a second one will also be created. The second sub will have the
same name plus an additional '_debug' appended to it. This is useful
for debugging runs and looking at what data was generated by all pubsub
steps.
- SCHRODINGER_CLOUD_WORKER_TIMEOUT
Optional debug setting. If set, pubsub workers will timeout after
SCHRODINGER_CLOUD_WORKER_TIMEOUT minutes.
- SCHRODINGER_GCP_NUM_PUBSUB_WORKERS
Sets the default number of pubsub workers that will be used. If not
set, one will be used. Note that this value can still be overridden
by a workflow's configuration.
"""
import collections
import copy
import enum
import glob
import inspect
import itertools
import logging
import math
import os
import pprint
import re
import shutil
import subprocess
import time
import uuid
import zipfile
from typing import Any
from typing import Iterable
from typing import List
from typing import Set
from typing import Optional
import more_itertools
from ruamel import yaml
from schrodinger.application.steps import env_keys
from schrodinger.job import jobcontrol
from schrodinger.models import json
from schrodinger.models import parameters
from schrodinger.models import paramtools
from schrodinger.Qt import QtCore
from schrodinger.tasks import hosts
from schrodinger.tasks import jobtasks
from schrodinger.tasks import queue
from schrodinger.tasks import tasks
from schrodinger.ui.qt.appframework2 import application
from schrodinger.utils import env
from schrodinger.utils import imputils
MODULE_ROOT_BLACKLIST = ('schrodinger',)
DOUBLE_BATCH_THRESHOLD = float('inf')
TOPIC_PREFIX_LIMIT = 10
TOPIC_SUFFIX_LIMIT = 6
TOPIC_STEP_ID_LIMIT_FOR_AWS = 50
TOPIC_STEP_ID_LIMIT_FOR_GCP = 230
#===============================================================================
# Logging
# Stepper uses a special logger that includes a timestamp relative to the start
# time of a workflow. Note that by nature the logger and formatter are global
# objects.
#===============================================================================
[docs]def get_debug_level():
return int(os.environ.get('SCHRODINGER_STEPPER_DEBUG', 0))
logger = logging.getLogger('schrodinger.stepper.stepper')
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
FORMATTER = ElapsedFormatter()
handler.setFormatter(FORMATTER)
logger.addHandler(handler)
#===============================================================================
# Batching
#===============================================================================
[docs]def ichunked(iterable, n):
"""
Reimplementation of more_itertools.ichunked that does not cache
n items of iterable at a time.
Breaks `iterable` into sub-iterables with `n` elements each.
Note that unlike more_itertools.ichunked, an error will be raised if
you try to iterate over a chunk before its previous chunk has been
consumed.
"""
source = iter(iterable)
_marker = object()
while True:
# Check to see whether we're at the end of the source iterable
item = next(source, _marker)
if item is _marker:
return
ichunk = itertools.islice(itertools.chain([item], source), n)
yield ichunk
try:
next(ichunk)
except StopIteration:
pass
else:
raise RuntimeError("Previous chunks must be exhausted before "
"iterating over following chunks")
def _assert_step_hasnt_started(func):
"""
Decorator that prevents a step method from running if the output generator
has already been created.
"""
def wrapped_func(self, *args, **kwargs):
if self._outputs_gen is not None:
raise RuntimeError(
f'Cannot call {func.__name__} because this step has already '
'started (i.e. outputs() or getOutput() has already been called).'
)
return func(self, *args, **kwargs)
return wrapped_func
def _prettify_time(time_in_float):
utc_time = time.gmtime(time_in_float)
return time.strftime('%Y-%m-%d %H:%M:%S %Z', utc_time)
def _prettify_duration(time_in_sec):
def div_w_remainder(numer, denom):
return int(numer // denom), numer % denom
days, remaining_sec = div_w_remainder(time_in_sec, 24 * 60 * 60)
hours, remaining_sec = div_w_remainder(remaining_sec, 60 * 60)
minutes, remaining_sec = div_w_remainder(remaining_sec, 60)
seconds = int(remaining_sec)
pretty_string = f'{hours:02d}:{minutes:02d}:{seconds:02d}'
if days:
pretty_string = f'{days:02d}:{pretty_string}'
return pretty_string
[docs]class ResourceType(enum.Enum):
LOCAL = enum.auto()
STATIC = enum.auto()
class _StepperResource(json.JsonableClassMixin, str):
"""
See `_BaseStep` for documentation.
"""
LOCAL = ResourceType.LOCAL
STATIC = ResourceType.STATIC
def __new__(cls, value='', *args, **kwargs):
# explicitly only pass value to the str constructor
return super().__new__(cls, value)
def __init__(self, path='', resource_type=LOCAL):
self.resource_type = resource_type
@classmethod
def fromJsonImplementation(cls, json_obj):
if isinstance(json_obj, str):
return cls(json_obj)
return cls(json_obj['path'],
ResourceType[json_obj['resource_type'].upper()])
def toJsonImplementation(self):
return {'path': str(self), 'resource_type': self.resource_type.name}
[docs]class StepperFile(_StepperResource):
pass
[docs]class StepperFolder(_StepperResource):
pass
class _DehydratedStep(parameters.CompoundParam):
"""
See `_BaseStep._dehydrateStep` for documentation.
"""
step_module_path: str
step_class_name: str
step_id: str
step_config: dict
starting_step_id: str = None
input_file: StepperFile = None
[docs]class StepTaskOutput(parameters.CompoundParam):
output_file: jobtasks.TaskFile = None
run_info: dict
misc_output_filenames: List[jobtasks.TaskFile]
[docs]class StepTaskMixin(parameters.CompoundParamMixin):
"""
This class must be mixed in with a subclass of AbstractComboTask. The
resulting task class may be used to run any step as a task, provided the
input, output, and settings classes are all JSONable.
"""
input: StepTaskInput
output: StepTaskOutput
DEFAULT_TASKDIR_SETTING = tasks.AUTO_TASKDIR
[docs] def __init__(self, *args, step=None, **kwargs):
super().__init__(*args, **kwargs)
self._step_class = None
self._step = None
if step is not None:
self.setStep(step)
[docs] def addLicenseReservation(self, license, num_tokens=1):
try:
super().addLicenseReservation(license, num_tokens)
except AttributeError:
pass
def _setUpInputFile(self, filepath):
"""
Given a filepath, do any necessary setup to register the file (e.g.
add it to a list of input files) and return the path that should be
used by the backend task. (e.g. the absolute path for a subprocess task
or a relative path for a job task)
"""
raise NotImplementedError
def _stepInputHasStepperFile(self):
if self._step.Input is None:
return False
elif self._step.Input is StepperFile:
return True
elif issubclass(self._step.Input, parameters.CompoundParam):
subparams = parameters.get_all_atomic_subparams(self._step.Input)
if any(sp.DataClass is StepperFile for sp in subparams):
return True
return False
def _stepOutputHasStepperFile(self):
if self._step.Output is None:
return False
elif self._step.Output is StepperFile:
return True
elif issubclass(self._step.Output, parameters.CompoundParam):
subparams = parameters.get_all_atomic_subparams(self._step.Output)
if any(sp.DataClass is StepperFile for sp in subparams):
return True
return False
[docs] def setStep(self, step):
self._step = step
for s in self._getAllStepsAndChains(step):
def skip_none_map_func(map_func):
def wrapped_map_func(param_val):
if param_val is None:
return None
return map_func(param_val)
return wrapped_map_func
paramtools.map_subparams(skip_none_map_func(self._setUpInputFile),
s.settings, StepperFile)
paramtools.map_subparams(skip_none_map_func(self._setUpInputFolder),
s.settings, StepperFolder)
dehyd_step = step._dehydrateStep()
self.input.dehydrated_step = dehyd_step
self._step_class = type(step)
self._setUpStepTask(dehyd_step)
def _getAllStepsAndChains(self, step: '_BaseStep') -> Set['_BaseStep']:
"""
Given a step, return a set of all steps it contains and itself.
For example, given a chain A with the following topology::
A
|-------|
B C
|-------|
D E
this method will return::
A -> set([A, B, C, D, E])
B -> set[B])
C -> set([C, D, E])
"""
if not isinstance(step, Chain):
return set([step])
leaf_steps = set(more_itertools.collapse(step))
max_depth = max((s.getStepId().count('.') for s in leaf_steps),
default=0)
all_steps_and_chains = set([step])
# Iteratively collapse to include every level up to the max depth
for level in range(max_depth):
all_steps_and_chains.update(
more_itertools.collapse(step, levels=level))
return all_steps_and_chains
[docs] def getStepClass(self):
return self._step_class
def _setUpStepTask(self, dehyd_step: _DehydratedStep):
self._preprocessModuleRoot(dehyd_step)
self._preprocessInputFiles(dehyd_step.input_file)
if dehyd_step.input_file is not None:
dehyd_step.input_file = self._setUpInputFile(dehyd_step.input_file)
def _preprocessModuleRoot(self, dehyd_step: _DehydratedStep):
"""
If the dehydrated step is defined in a package in a non-blacklisted
folder in the working directory, add the package as an input folder for
the task so it will be available for import in the backend task folder.
If the step is defined in the main script we will not be able to import
it in the backend, so a `ValueError` exception is raised.
:raise ValueError: if the module root is __main__.
"""
root = dehyd_step.step_module_path.split('.')[0]
if root == '__main__':
raise ValueError(
f'Step class {dehyd_step.step_class_name} should be defined'
f' outside of __main__.')
if os.path.isdir(root) and not root.lower() in MODULE_ROOT_BLACKLIST:
print(f'Using nonstandard package {root}')
self._setUpInputFolder(root)
def _preprocessInputFiles(self, input_file: str):
"""
Before the starting the task, convert any input StepperFiles to paths
relative to the backend machine.
"""
if self._stepInputHasStepperFile():
# If the inputs for the steps are StepperFiles, then we need
# to read the input file and register the inputs and convert
# them to the right path for the backend.
serializer = self._step._getInputSerializer()
# Read the inputs and register them
inps = []
if self._step.Input is StepperFile:
for inp in serializer.deserialize(input_file):
inps.append(self._setUpInputFile(inp))
elif issubclass(self._step.Input, parameters.CompoundParam):
for inp in serializer.deserialize(input_file):
inps.append(
paramtools.map_subparams(self._setUpInputFile, inp,
StepperFile))
# Write out the inputs again with the correct paths for
# the backend
serializer.serialize(inps, input_file)
def _makeBackendStep(self):
step = _rehydrate_step(self.input.dehydrated_step)
self._step_class = type(step)
if not self.input._double_batch:
step.setBatchSettings(None)
return step
[docs] def mainFunction(self):
try:
self._step = self._makeBackendStep()
step = self._step
batch_outp_name = self.name + '.out'
step.writeOutputsToFile(batch_outp_name)
self.output.output_file = batch_outp_name
self.output.run_info = step._run_info
if self.input.debug_mode:
self._runDebug()
except Exception:
self._registerOutputFilesFromDir(self.getTaskDir())
raise
def _runDebug(self):
pass
def _postprocessOutputFiles(self):
"""
After the task returns, convert any output StepperFiles to paths
relative to the frontend machine.
"""
if self._stepOutputHasStepperFile():
output_file = self.output.output_file
self._processOutputStepperFiles(output_file)
def _processOutputStepperFiles(self, output_file: str):
"""
Reads in the output file containing stepper files, processes them
(e.g. register them as output files, convert them to the correct paths),
and then writes them back out again.
:param output_file: File storing list of unprocessed output stepper
files
"""
processed_outputs = []
serializer = self._step.getOutputSerializer()
if self._step.Output is StepperFile:
for outp in serializer.deserialize(output_file):
outp = self._setUpOutputFile(outp)
processed_outputs.append(outp)
elif issubclass(self._step.Output, parameters.CompoundParam):
for outp in serializer.deserialize(output_file):
processed_outputs.append(
paramtools.map_subparams(self._setUpOutputFile, outp,
StepperFile))
serializer.serialize(processed_outputs, output_file)
def _setUpOutputFile(self, outp_file):
return StepperFile(
os.path.join(self.getTaskDir(), self.getTaskFilename(outp_file)))
[docs]class StepSubprocessTask(StepTaskMixin, tasks.ComboSubprocessTask):
def _setUpInputFile(self, filepath):
return StepperFile(os.path.abspath(filepath))
def _setUpInputFolder(self, folderpath):
return StepperFolder(os.path.abspath(folderpath))
@tasks.postprocessor
def _postprocessOutputFiles(self):
return super()._postprocessOutputFiles()
def _registerOutputFilesFromDir(self, *args):
pass
[docs]class StepJobTask(StepTaskMixin, jobtasks.ComboJobTask):
_use_async_jobhandler: bool = True
input: StepTaskInput
output: StepTaskOutput
def _makeBackendStep(self, *args, **kwargs):
step = super()._makeBackendStep(*args, **kwargs)
return step
def _isLocalResource(self, fpath):
return fpath.resource_type is ResourceType.LOCAL
def _setUpInputFile(self, filepath):
"""
Register a file as an input file and convert the path into a path
that will be valid for the compute host. For example...
self._setUpInputFile(StepperFile('/path/to/inps.txt')) -> 'inps.txt'
self._setUpInputFile(StepperFile('inps.txt')) -> 'inps.txt'
self._setUpInputFile(StepperFile('data/inps.txt')) -> 'data/inps.txt'
Static filepaths will have their paths returned unchanged since the
compute host will have access to them using the same path.
"""
if self._isLocalResource(filepath):
self.input.misc_input_filenames.append(filepath)
if self._isLocalResource(filepath) and (os.path.isabs(filepath) or
filepath.startswith('..')):
return os.path.basename(filepath)
else:
return filepath
def _setUpInputFolder(self, folderpath):
"""
Register a file as an input file and convert the path into a path
that will be valid for the compute host.
"""
if self._isLocalResource(folderpath):
self.addInputDirectory(folderpath)
if self._isLocalResource(folderpath) and (os.path.isabs(folderpath) or
folderpath.startswith('..')):
return os.path.basename(folderpath)
else:
return folderpath
def _runDebug(self):
# Register all input and output files so they're brought back to the
# launch machine.
self.output.misc_output_filenames.extend(
list(_get_stepper_debug_files()))
[docs] def mainFunction(self):
self._job = jobcontrol.get_backend().getJob()
super().mainFunction()
if get_debug_level() >= 2:
self._registerAllFiles()
if self._stepOutputHasStepperFile():
self._processOutputStepperFiles(self.output.output_file)
def _registerOutputFilesFromDir(self, dir):
self.output.misc_output_filenames.append(dir)
def _registerAllFiles(self):
self._registerOutputFilesFromDir('.')
@tasks.postprocessor
def _postprocessOutputFiles(self):
return super()._postprocessOutputFiles()
def _setUpOutputFile(self, outp_file):
result = StepperFile(
os.path.join(self.getTaskDir(), self.getTaskFilename(outp_file)))
self.output.misc_output_filenames.append(result)
return result
class _PubSubTaskInput(StepTaskInput):
input_topic: str = None
output_topic: str = None
batch_size: int = None
class _PubSubTaskOutput(StepTaskOutput):
num_outputs: int = None
num_inputs: int = None
def _dump_config(step, settings_fname):
"""
Dump the canonicalized config for `step` to a yaml file `settings_fname`.
"""
with open(settings_fname, 'wt') as settings_file:
# We deepcopy the config to get rid of any special types that
# yaml won't know how to process. See AD-378 for more info.
yaml.dump(copy.deepcopy(step._getCanonicalizedConfig()),
settings_file,
Dumper=yaml.Dumper)
def _load_config(settings_fname: str):
"""
Load the settings from a yaml configuration file
:param file: the configuration file
:return: the settings
:rtype: dict
"""
with open(settings_fname) as fh:
return yaml.load(fh.read(), Loader=yaml.Loader)
class _PubSubWorkerTask(StepJobTask):
"""
A task implementing one PubSub worker. This task will take a step,
input topic, and an output topic and run the step on batches of inputs
pulled from input topic and upload the results to supplied output topic.
"""
Input = _PubSubTaskInput
Output = _PubSubTaskOutput
def _makePubsubCmd(self):
inp = self.input
step = self._step
args = [
'stepper',
inp.input_topic,
inp.output_topic,
self._getSettingsFilename(),
step._getStepPath(),
step.getStepId(),
]
if inp.batch_size is not None:
args.append(str(inp.batch_size))
return [SCHRODINGER_RUN, *step.cloud_service_script] + args
def _getSettingsFilename(self):
step = self._step
return f'{step.getStepId()}_settings.yaml'
def _generateSettingsFile(self):
settings_fname = self._getSettingsFilename()
_dump_config(self._step, settings_fname)
def mainFunction(self):
self._step = self._makeBackendStep()
self._generateSettingsFile()
cmd = self._makePubsubCmd()
stdout_list = []
with subprocess.Popen(cmd,
stdout=subprocess.PIPE,
bufsize=1,
universal_newlines=True) as p:
for line in p.stdout:
stdout_list.append(line)
print(line, end='') # process line here
if p.returncode != 0:
self._registerAllFiles()
raise subprocess.CalledProcessError(p.returncode, p.args)
stdout = ''.join(stdout_list)
last_line = stdout.split('\n')[-2]
output = self.output
output.num_inputs, output.num_outputs = map(
int,
last_line.strip('()').split(' '))
class _PubSubWorkerLauncherTask(StepJobTask):
"""
A task implementing a PubSub worker launcher. This task's purpose is simply
to launch many `_PubSubWorkerTask`s. This is necessary in order to launch
enough `_PubSubWorkerTask` simultaneously given jobserver's job launch
speed. See `_dbl_batching_` in the module string for more info.
"""
Input = _PubSubTaskInput
Output = _PubSubTaskOutput
def mainFunction(self):
"""
Launch DOUBLE_BATCH_THRESHOLD _PubSubWorkerTasks
This is done by simply running the backend step set to this task.
The backend step will already have batch settings on it with
`num_pubsub_workers` set to to `DOUBLE_BATCH_THRESHOLD`, so we just
need to set the topics on the step and run it.
"""
step = self._step = self._makeBackendStep()
self._step.setInputTopic(self.input.input_topic)
self._step.setOutputTopic(self.input.output_topic)
step.outputs()
self.output.num_outputs = step._output_count
self.output.num_inputs = step._input_count
def _makeBackendStep(self):
step = _rehydrate_step(self.input.dehydrated_step)
self._step_class = type(step)
return step
#===============================================================================
# Running steps in batches
#===============================================================================
def _get_default_num_pubsub_workers():
return int(os.environ.get('SCHRODINGER_GCP_NUM_PUBSUB_WORKERS', '1'))
[docs]class BatchSettings(parameters.CompoundParam):
size: int = None
task_class: type = StepJobTask
hostname: str = 'localhost'
use_pubsub: bool
num_pubsub_workers: int = 1 # default value set in initializeValue
[docs] def initializeValue(self):
super().initializeValue()
self.num_pubsub_workers = _get_default_num_pubsub_workers()
[docs]class Serializer:
""" <_serialization_>
A class for defining special serialization for some datatype. Serialization
by default uses the `json` protocol, but if a specialized protocol is wanted
instead, users can subclass this class to do so.
Subclasses should:
- Define `DataType`. This is the class that this serializer can
encode/decode.
- Define `toString(self, output)`, which defines how to serialize
an output.
- Define `fromString(self, input_str)`, which defines how to
deserialize an input.
This can then be used as the `InputSerializer` or `OutputSerializer` for
any step.
Here's an example for defining an int that's serialized in base-two
as opposed to base-ten::
class IntBaseTwoSerializer(Serializer):
DataType = int
def toString(self, output):
return bin(output) # 7 -> '0b111'
def fromString(self, input_str):
return int(input_str[2:], 2) # '0b111' -> 7
This can then be used anywhere you'd use an int as the output or input in a
step. For example::
class SquaringStep(MapStep):
Input = int
InputSerializer = IntBaseTwoSerializer
Output = int
OutputSerializer = IntBaseTwoSerializer
def mapFunction(self, inp):
yield inp**2
Now, any time that a `SquaringStep` would read its inputs from a file
or write its outputs to a file, it'll do so using using a base-two
representation.
"""
DataType = NotImplemented
[docs] def serialize(self, items, fname):
"""
Write `items` to a file named `fname`.
:type items: iterable[self.DataType]
:type fname: str
"""
with open(fname, 'w') as outfile:
for outp in items:
outfile.write(self.toString(outp) + '\n')
[docs] def deserialize(self, fname):
"""
Read in items from `fname`.
:type fname: str
:rtype: iterable[self.DataType]
"""
if fname is None:
raise TypeError("deserialize called with None")
with open(fname, 'r') as infile:
for line in infile:
inp = self.fromString(line.strip('\n'))
yield inp
[docs] def fromString(self, input_str):
raise NotImplementedError
[docs] def toString(self, output):
raise NotImplementedError
@classmethod
def __init_subclass__(cls):
if cls.DataType is NotImplemented:
raise NotImplementedError(
"DataType must be specified for Serializers")
super().__init_subclass__()
class _DynamicSerializer(Serializer):
"""
The default serializer that simply uses `json.loads` and `json.dumps`
"""
DataType = object
def __init__(self, dataclass):
self._dataclass = dataclass
def fromString(self, inp_str):
try:
return json.loads(inp_str, DataClass=self._dataclass)
except:
print(f"Error while trying to decode: {inp_str}")
raise
def toString(self, outp):
return json.dumps(outp)
[docs]class ValidationIssue(RuntimeError):
[docs] def __init__(self, source_step, msg):
self.source_step = source_step
self.msg = msg
super().__init__(msg)
def __repr__(self):
return f'{type(self).__name__}("{self.source_step.getStepId()}", "{self.msg}")'
def __str__(self):
return f'{type(self).__name__}("{self.source_step.getStepId()}", "{self.msg}")'
[docs]class SettingsError(ValidationIssue):
"""
Used in conjunction with `_BaseStep.validateSettings` to report an error
with settings. Constructed with the step with the invalid settings and an
error message, e.g.
`SettingsError(bad_step, "Step does not have required settings."`)
"""
[docs]class SettingsWarning(ValidationIssue):
"""
Used in conjunction with `_BaseStep.validateSettings` to report a warning
with settings. Constructed with the step with the invalid settings and an
error message, e.g.
`SettingsWarning(bad_step, "Step setting FOO should ideally be positive"`)
"""
[docs]class ResourceError(ValidationIssue):
"""
Used in conjunction with `_BaseStep.validateSettings` to report an error
with a resource setting. Constructed with the step with the invalid setting
and an error message, e.g.,
`ResourceError(bad_step, "Step setting 'file' has not been set."`)
"""
[docs]class LocalResourceError(ResourceError):
"""
A ResourceError specifically for local StepperFile and StepperFolder
validations, i.e., resources that are on a job submission host and may have
to be transferred to compute resources
"""
[docs]class StaticResourceError(ResourceError):
"""
A ResourceError specifically for static StepperFile and StepperFolder
validations, i.e., resources that are not necessarily available on a job
submission host
"""
class _BaseStep(QtCore.QObject):
"""
The features and behavior described in this docstring apply to all steps
and chains.
To use a step, instantiate it, set the inputs, and request outputs.
Accessing outputs causes the step to get input from the input source and
run the step operation. There is no concept of "running" or "starting" the
step.
class SquareStep(MapStep):
def mapFunction(self, inp):
yield inp * inp
step = SquareStep()
step.setInputs([1, 2, 3])
print(step.getOutputs()) # [1, 4, 9]
The outputs are produced with a generator. Thus, calling
`step.getOutputs()` twice will always result in an empty list for the
second call.
Settings
======== <_settings_>
Every step can parameterize how it operates using a set of settings. The
settings of a step are defined as a subclass of `CompoundParam` at the
class level, and can be set per-instance using keyword arguments at
instantiation time. Example::
class MultiplyByStep(MapStep):
class Settings(parameters.CompoundParam):
multiplier: int = 1
by_4_step = MultiplyByStep(multiplier=4)
by_4_step.setInputs([1, 2, 3])
by_4_step.getOutputs() == [4, 8, 12]
=============
Configuration
=============
A configuration is a dictionary that specifies settings values for steps
within a chain.
A step can take a configuration dictionary that maps step
selectors to default setting values. For example::
Chain(config={'A':{'max_rounds':10}})
This configuration will go through `Chain` and set all settings of A step's
to have `max_rounds` value of 10.
There are three currently supported selectors:
General selectors e.g. "A":
This will select all steps of type "A" (Note that this does not
select subclasses of "A")
Child selectors e.g. "A>B"
This will select all steps of type "B" that
are in chains of type "A". Multiple ">" operators can be linked
together. For example, "A>B>C" will select all "C" steps in "B"
chains which are in the "A" chain.
ID selector e.g. "A.B_0"
This will select the first "B" step in chain "A". The top level
chain never has an index. Steps in a chain are indexed relative to
other steps of the same type in that chain. For example,
if chain "A" is composed of steps BCBCC, then the ids would be
"A.B_0", "A.C_0", "A.B_1", "A.C_1", "A.C_2"
As a convenience, you can set the special key __DEFAULT_BATCH_SETTINGS__
to a dictionary to use as the new default batch settings.
============================================================================
File Handling <_file_handling_>
============================================================================
To specify a file, use the `StepperFile` class as the input type, output
type, or as a subparam on the `Settings` class. Local files specified in
these locations will automatically be copied to and from compute machines.
You can similarly specify `StepperFolder` to have folders copied over
to compute machines. Currently, `StepperFolder` can only be used with
step settings, not as step inputs or outputs.
Strings specified in `config` for `StepperFile` and `StepperFolder` will
be automatically cast.
If a step depends on a shared resource (e.g. on a shared filesystem,
built into a node's image), the file or folder can be marked as a STATIC
resource, signifying to the framework that it does not need to be
copied over. To do this, set a stepper file or folder with a dictionary
specifying path and the resource type. For example::
my_step = MyStep(config={
'compute_library':{
'path':'/path/to/shared/resource',
'resource_type':'STATIC'
})
========
Licenses
========
Some steps may require a license for each node that it's run on. All
batchable steps support this feature.
To specify the number of license reservations a step requires, override
`getLicenseRequirements` and return a dictionary mapping licenses
to the number of tokens required for that license. For example::
from schrodinger.utils import license
class LicenseRequiringStep(MapStep):
Input = str
Output = str
def getLicenseRequirements(self):
return {license.GLIDE_MAIN: 2}
Once you've specified what licenses are required, any batched steps will
automatically have the right number of licenses reserved.
.. NOTE:: Batched `Chain` by default account for any reservations that
might be necessary to run any component steps.
"""
Input = None
InputSerializer = _DynamicSerializer
Output = None
OutputSerializer = _DynamicSerializer
Settings = parameters.CompoundParam
def __init__(self,
settings=None,
config=None,
step_id=None,
_run_info=None,
**kwargs):
super().__init__()
if not step_id:
self._step_id = type(self).__name__
else:
self._step_id = step_id
if _run_info is None:
_run_info = collections.defaultdict(dict)
self._setRunInfo(_run_info)
self._outputs_gen = None
self.setSettings(settings, **kwargs)
self._setCompositionPath(type(self).__name__)
self._setConfig(config)
self._input_file = None
self._inputs = None
self._input_count = 0
@classmethod
def __init_subclass__(cls):
"""
Validate the validity of the class.
"""
cls._validateInputSerializer()
cls._validateOutputSerializer()
if (not isinstance(cls.Settings, type) or
not issubclass(cls.Settings, parameters.CompoundParam)):
raise TypeError("Custom settings must subclass CompoundParam")
super().__init_subclass__()
@classmethod
def _validateInputSerializer(cls):
if cls.InputSerializer is not _DynamicSerializer:
if cls.Input is None or not issubclass(
cls.Input, cls.InputSerializer.DataType):
msg = (
'Incompatible InputSerializer specified. \n'
f'Step "{cls.__name__}" has Input "{cls.Input}" '
f'but InputSerializer has DataType "{cls.InputSerializer.DataType}"'
)
raise TypeError(msg)
@classmethod
def _validateOutputSerializer(cls):
if cls.OutputSerializer is not _DynamicSerializer:
if cls.Output is None or (
cls.Output != cls.OutputSerializer.DataType and
not issubclass(cls.Output, cls.OutputSerializer.DataType)):
msg = (
'Incompatible OutputSerializer specified. \n'
f'Step "{cls.__name__}" has Output "{cls.Output}" '
f'but OutputSerializer has DataType "{cls.OutputSerializer.DataType}"'
)
raise TypeError(msg)
def _getCanonicalizedConfig(self):
return {self.getStepId(): self.settings.toDict()}
def report(self, prefix=''):
"""
Report the settings and batch settings for this step.
"""
logger.info(f'{prefix} - {self.getStepId()}')
all_options = [self.settings]
if hasattr(self, '_batch_settings'):
all_options.append(self._batch_settings)
for opts in all_options:
if opts and opts.toDict():
logger.info(
f'{prefix} {opts.__class__.__name__}: {opts.toDict()}')
def prettyPrintRunInfo(self):
"""
Format and print info about the step's run.
"""
run_info = copy.deepcopy(self.getRunInfo())
self._prettifyRunInfo(run_info)
# Listify the dict into tuples since prettyprint doesnt respect
# dictionary order
run_info = list(run_info.items())
pprint.pprint(run_info)
def _prettifyRunInfo(self, run_info_dict):
"""
Recurse through `run_info_dict` and listify dicts into item tuples.
This improves the readability of pretty-print and preserves the
dictionary insertion order.
"""
for k, v in run_info_dict.items():
if isinstance(v, dict):
self._prettifyRunInfo(v)
def __copy__(self):
copied_step = type(self)(settings=copy.copy(self.settings),
config=self._getCanonicalizedConfig(),
step_id=self.getStepId())
return copied_step
def _getInputSerializer(self):
if issubclass(self.InputSerializer, _DynamicSerializer):
return _DynamicSerializer(dataclass=self.Input)
else:
return self.InputSerializer()
def getOutputSerializer(self):
if issubclass(self.OutputSerializer, _DynamicSerializer):
return _DynamicSerializer(dataclass=self.Output)
else:
return self.OutputSerializer()
def _validateStepperFileSettings(self):
"""
Look through settings for StepperFiles and StepperFolders and
confirms that that they're set to valid files and folder paths.
ResourceErrors will be returned for StepperFile or StepperFolder
instances that are static resources.
:return: A list of `SettingsError`, one for each invalid stepper file
:rtype: list[SettingsError or ResourceError]
"""
results = []
if self.settings is None:
return results
settings = self.settings
for subparam_name, abstract_subparam in self.Settings.getSubParams(
).items():
what = f"<{self._step_id}> setting '{subparam_name}'"
resource = abstract_subparam.getParamValue(settings)
if abstract_subparam.DataClass in (StepperFile, StepperFolder):
if resource is None:
results.append(
SettingsError(self, f"{what} has not been set."))
continue
error = (StaticResourceError if
(resource and
resource.resource_type is resource.STATIC) else
LocalResourceError)
if abstract_subparam.DataClass is StepperFile:
if not os.path.isfile(resource):
results.append(
error(
self,
f"{what} set to invalid file path: '{str(resource)}'"
))
elif (resource.resource_type is resource.STATIC and
not os.path.isabs(resource)):
results.append(
error(
self,
f"{what} is set as a static file with a relative"
f" path: {str(resource)}"))
if abstract_subparam.DataClass is StepperFolder:
if not os.path.isdir(resource):
results.append(
error(
self,
f"{what} set to invalid dir path: '{str(resource)}'"
))
elif (resource.resource_type is resource.STATIC and
not os.path.isabs(resource)):
results.append(
error(
self,
f"{what} is set as a static folder with a relative"
f" path: {str(resource)}"))
return results
def validateSettings(self):
"""
Check whether the step settings are valid and return a list of
`SettingsError` and `SettingsWarning` to report any invalid settings.
Default implementation checks that all stepper files are set to valid
file paths.
:rtype: list[TaskError or TaskWarning]
"""
return self._validateStepperFileSettings()
def getResources(self, param_type, resource_type):
"""
Get the stepper resources in the settings that are instances of
`param_type` and have a resource_type attribute that is `resource_type`.
Note does not work for list/set/tuple subparams in the settings.
:param param_type: the resource parameter type
:type param_type: _StepperResource
:param resource_type: the type of resource to get
:type resource_type: ResourceType
:return: the set of stepper resources of `resource_type`
:rtype: set of _StepperResource
"""
if self.settings is None:
return {}
def _add(value):
if value and value.resource_type == resource_type:
resources.add(value)
return value
resources = set()
paramtools.map_subparams(_add, self.settings, param_type)
return resources
def _setCompositionPath(self, path):
"""
Update the composition path. The composition path is the string
that defines a steps ancestry. For example, a composition path "A>B>C"
means that this step, C, is in a chain B, which is itself in a chain
A.
"""
self._comp_path = path
def _setStepId(self, new_id):
self._step_id = new_id
def getStepId(self):
return self._step_id
def _setRunInfo(self, run_info):
self._run_info = run_info
def getRunInfo(self):
return self._run_info
def _setConfig(self, config):
def split(path):
return re.split('[.>]', path)
if config:
# Sort by number of split items in the selectors so that we apply
# child selectors by order of selectivity.
if '__sorted' not in config:
config = dict(
sorted(config.items(),
key=lambda item: len(split(item[0]))))
config['__sorted'] = True
for k in config:
split_k = split(k)
last_comp_path = split(self._comp_path)[-len(split_k):]
# only apply the settings if the last items in the composition
# path matches all items in the selector key
# to avoid C>BA or C.BA getting settings from A
if last_comp_path == split_k:
self._applyConfigSettings(config[k])
# Apply ID selector settings last so they take final priority
if self._step_id in config:
self._applyConfigSettings(config[self._step_id])
self._config = config
def _applyConfigSettings(self, new_settings):
if new_settings:
for k, v in new_settings.items():
if v is None:
continue
if not hasattr(self.Settings, k):
raise SettingsError(
self, f"Step \"{type(self).__name__}\""
f" has no setting \"{k}\"")
self.settings.setValue(**new_settings)
def deserialize_res(resource, resource_class):
if not isinstance(resource,
resource_class) and resource is not None:
return resource_class.fromJson(resource)
return resource
paramtools.map_subparams(
lambda res: deserialize_res(res, StepperFile), self.settings,
StepperFile)
paramtools.map_subparams(
lambda res: deserialize_res(res, StepperFolder), self.settings,
StepperFolder)
def setInputFile(self, fname):
self._input_file = fname
self.setInputs(self._inputsFromFile(fname))
def _inputsFromFile(self, fname):
serializer = self._getInputSerializer()
yield from serializer.deserialize(fname)
def writeOutputsToFile(self, fname):
"""
Write outputs to `fname`. By default, the output file will consist of
one line for each output with whatever is produced when passing the out-
put to `str`. Override this method if more complex behavior is needed.
"""
serializer = self.getOutputSerializer()
serializer.serialize(self.outputs(), fname)
def setUp(self):
"""
Hook for adding any type of work that needs to happen before any
outputs are created.
"""
pass
def cleanUp(self):
"""
Hook for adding any type of work that needs to happen after all
outputs are exhausted or if some outputs are created and the step
is destroyed.
"""
pass
@_assert_step_hasnt_started
def setSettings(self, settings=None, **kwargs):
"""
Supply the settings for this step to use when running. The supplied
settings must match the Settings class or, if None is passed in, a
default settings object will be used.
"""
if settings is not None and kwargs:
raise ValueError('Cannot specify both settings and kwargs')
elif self.Settings is None:
if settings is not None or kwargs:
raise ValueError("Specified settings for a step that doesn't "
"expect settings")
elif settings is None:
settings = self.Settings(**kwargs)
elif not isinstance(settings, self.Settings):
raise ValueError(f"settings should be of type {self.Settings}, not "
f"{type(settings)}.")
self.settings = settings
@_assert_step_hasnt_started
def setInputs(self, inputs):
"""
Set the input source for this step. This should be an iterable. Items
from the input source won't actually be accessed until the outputs for
this step are accessed.
"""
if inputs is None:
inputs = []
self._inputs = inputs
def inputs(self):
yield from self._inputs
@_assert_step_hasnt_started
def outputs(self):
"""
Creates the output generator for this step and returns it.
"""
self.setUp()
self._run_info[self.getStepId()] = {}
outputs_gen = self._makeOutputGenerator()
outputs_gen = self._outputsWithCounting(outputs_gen)
self._outputs_gen = self._cleanUp_after_generator(outputs_gen)
return self._outputs_gen
def _outputsWithCounting(self, output_gen):
self._output_count = 0
self._end_time = None
def wrapped_output_gen():
for output in output_gen:
self._output_count += 1
yield output
self._end_time = time.time()
self._updateRunInfo()
return wrapped_output_gen()
def _cleanUp_after_generator(self, gen):
"""
Call the step's cleanUp method once the generator has been
exhausted.
"""
try:
for output in gen:
yield output
finally:
self.cleanUp()
def _updateRunInfo(self):
step_run_info = self._run_info[self.getStepId()]
start_time = getattr(self, '_start_time', None)
end_time = getattr(self, '_end_time', None)
step_run_info['num_inputs'] = self._input_count
step_run_info['num_outputs'] = getattr(self, '_output_count', 0)
if start_time and end_time:
duration = self._end_time - self._start_time
elif start_time:
duration = time.time() - self._start_time
else:
duration = None
if start_time:
step_run_info['start_time'] = _prettify_time(start_time)
if end_time:
step_run_info['end_time'] = _prettify_time(end_time)
if duration:
step_run_info['duration'] = _prettify_duration(duration)
def _getElapsedTime(self):
if self._start_time is None:
raise RuntimeError("Can't get elapsed time when step hasn't been "
"started.")
return _prettify_duration(time.time() - self._start_time)
def _makeOutputGenerator(self):
raise NotImplementedError()
def getOutputs(self):
"""
Gets all the outputs in a list by fully iterating the output generator.
"""
return list(self.outputs())
def getLicenseRequirements(self):
return {}
def _rehydrate_step(dehydrated_step: _DehydratedStep):
"""
Recreate the step that `dehydrated_step` was created from.
"""
with env.prepend_sys_path(os.getcwd()):
step_module = imputils.get_module_from_path(
dehydrated_step.step_module_path)
step_class = getattr(step_module, dehydrated_step.step_class_name)
return step_class._rehydrateStep(dehydrated_step)
SCHRODINGER_RUN = os.path.join(os.environ['SCHRODINGER'], 'run')
def _clean_up_task(task):
assert task.status in (task.DONE, task.FAILED)
assert task.taskDirSetting() is not None
shutil.rmtree(task.getTaskDir())
class _BatchableStepMixin:
"""
A step that can distribute its input into multiple batches and processes
them in parallel as tasks. Example::
# Running a batcher as a single step
b = ProcessSmilesChain(batch_size=10)
b.setInputFile(smiles_filename)
for output in b.outputs():
print(output)
"""
def __init__(self, *args, batch_size=None, batch_settings=None, **kwargs):
if batch_size and batch_settings:
raise ValueError("Can't pass both batch_size and batch_settings")
elif batch_size is not None:
batch_settings = BatchSettings(size=batch_size)
self._batch_settings = batch_settings
super().__init__(*args, **kwargs)
@_assert_step_hasnt_started
def setBatchSettings(self, batch_settings):
"""
Set the batch settings for this step. Will raise an exception if this
is done after the step has already started processing inputs.
:type batch_settings: BatchSettings
"""
self._batch_settings = batch_settings
def _prettifyRunInfo(self, run_info_dict):
super()._prettifyRunInfo(run_info_dict)
if 'batches' in run_info_dict:
batch_infos = []
if not isinstance(run_info_dict['batches'], dict):
return
for batch_job_id, batch_info in run_info_dict['batches'].items():
self._prettifyRunInfo(batch_info)
batch_infos.append((batch_job_id, list(batch_info.items())))
run_info_dict['batches'] = batch_infos
def _setConfig(self, config):
if config:
if defaults := config.get('__DEFAULT_BATCH_SETTINGS__'):
if not '__DEFAULTS_APPLIED__' in config:
for k, v in config.items():
if isinstance(v, dict) and v.get(
'batch_settings', None):
v['batch_settings'] = {
**defaults,
**v['batch_settings']
}
config['__DEFAULTS_APPLIED__'] = True
if self._batch_settings is not None:
self._batch_settings.setValue(**defaults)
return super()._setConfig(config)
def _applyConfigSettings(self, new_settings):
new_settings = copy.deepcopy(new_settings)
if 'batch_settings' in new_settings:
batch_settings = new_settings['batch_settings']
if batch_settings is None:
self.setBatchSettings(new_settings.pop('batch_settings'))
else:
for k in new_settings['batch_settings']:
if not hasattr(BatchSettings, k):
raise SettingsError(
self,
f"Specified batch setting does not exist: \"{k}\"")
self.setBatchSettings(
BatchSettings(**new_settings.pop('batch_settings')))
super()._applyConfigSettings(new_settings)
def _getCanonicalizedConfig(self):
"""
Return a config that can be used to set the settings for a different
instance of this step to the same settings as this step.
"""
if isinstance(self.settings, parameters.CompoundParam):
canon_config = super()._getCanonicalizedConfig()
if self._batch_settings:
batch_settings_dict = self._batch_settings.toDict()
# Setting task class through config is currently unsupported
batch_settings_dict.pop('task_class')
canon_config[
self.getStepId()]['batch_settings'] = batch_settings_dict
return canon_config
return {}
def _dehydrateStep(self):
"""
Create a `_DehydratedStep` from this instance of a step. A dehydrated
step has all the information necessary to recreate a step sans inputs
and can be serialized in a json file.
"""
dehyd = _DehydratedStep()
step_module = inspect.getmodule(self)
dehyd.step_module_path = imputils.get_path_from_module(step_module)
dehyd.step_class_name = type(self).__name__
dehyd.step_id = self._step_id
dehyd.step_config = self._getCanonicalizedConfig()
if self._input_file is not None:
dehyd.input_file = StepperFile(self._input_file)
return dehyd
def _getStepPath(self):
step_module = inspect.getmodule(self)
step_module_path = imputils.get_path_from_module(step_module)
step_class_name = type(self).__name__
return f"{step_module_path}.{step_class_name}"
@classmethod
def _rehydrateStep(cls, dehydrated_step):
"""
Recreate the step that `dehydrated_step` was created from.
"""
step = cls(step_id=dehydrated_step.step_id,
config=dehydrated_step.step_config)
if dehydrated_step.input_file:
step.setInputFile(dehydrated_step.input_file)
return step
def _makeStep(self, input_file):
step = copy.copy(self)
step.setInputFile(input_file)
return step
def getLicenseRequirements(self):
return {}
def _makeBatchTask(self, batch_file, double_batch: bool):
step = self._makeStep(batch_file)
task = self._batch_settings.task_class(step=step)
task.input._double_batch = double_batch
if issubclass(self._batch_settings.task_class, StepJobTask):
task.job_config.host_settings.host = hosts.Host(
self._batch_settings.hostname)
if not double_batch:
for req_license, num_tokens in self.getLicenseRequirements().items(
):
task.addLicenseReservation(req_license, num_tokens)
return task
def _queueBatchSteps(self, task_queue):
for batch_num, batch_file, double_batch in self._splitInputsIntoBatchFiles(
):
application.process_events()
task = self._makeBatchTask(batch_file, double_batch)
task.name, _ = os.path.splitext(os.path.basename(batch_file))
task_queue.addTask(task)
def _splitInputsIntoBatchFiles(self):
serializer = self._getInputSerializer()
inps = self._inputsWithCounting()
continue_with_double_batching = False
MAX_BATCHES = int(
os.environ.get('SCHRODINGER_MAX_NUM_BATCHES', 999999999))
for batch_num, batch_of_lines in enumerate(
ichunked(inps, self._batch_settings.size)):
batch_fname = self.getStepId() + '_batch_' + str(batch_num) + '.in'
serializer.serialize(batch_of_lines, batch_fname)
yield batch_num, batch_fname, False
if batch_num + 1 >= MAX_BATCHES:
break
if batch_num + 1 >= DOUBLE_BATCH_THRESHOLD:
continue_with_double_batching = True
break
if continue_with_double_batching:
double_batch_size = self._batch_settings.size * DOUBLE_BATCH_THRESHOLD
double_batches = ichunked(inps, double_batch_size)
for batch_num, batch_of_lines in enumerate(double_batches,
start=batch_num + 1):
batch_fname = self.getStepId() + '_batch_' + str(
batch_num) + '.in'
serializer.serialize(batch_of_lines, batch_fname)
yield batch_num, batch_fname, True
if batch_num + 1 >= MAX_BATCHES:
break
@_assert_step_hasnt_started
def outputs(self):
"""
Like the super class method, returns a generator for the outputs.
Calling the generator begins the batching process by requesting outputs
from the input source (previous step), accumulating them into batches
of the specified size, and queuing them all up.
"""
if self._batch_settings is None:
return super().outputs()
else:
self._start_time = time.time()
FORMATTER.start()
self._run_info[self.getStepId()] = {
'batches': collections.defaultdict(dict)
}
task_dj = queue.TaskDJ(max_failures=queue.NOLIMIT)
self._queueBatchSteps(task_dj)
if not task_dj.waiting_jobs:
# We didn't have any batches to process, so just return early
return []
outputs_gen = self._makeBatchedOutputsGenerator(task_dj)
outputs_gen = self._outputsWithCounting(outputs_gen)
self._outputs_gen = outputs_gen
return outputs_gen
def _updateBatchRunInfo(self, batch_name, new_batch_info):
stepid = self.getStepId()
batch_info = self._run_info[stepid]['batches'][batch_name]
batch_info.update(new_batch_info)
batch_info.update(batch_info.pop(stepid))
def _makeBatchedOutputsGenerator(self, task_dj):
for task in task_dj.updatedTasks():
if task.status is task.DONE:
self._updateBatchRunInfo(task.name, task.output.run_info)
branch_count = task.name.count('.')
logger.info(f'{">"*branch_count}START {task.name} log')
logger.info(task.getLogAsString().strip())
logger.info(f'{">"*branch_count}END {task.name} log')
task.wait()
outp_file = task.output.output_file
assert os.path.isfile(outp_file), outp_file
serializer = self.getOutputSerializer()
for outp in serializer.deserialize(outp_file):
yield outp
elif task.status is task.FAILED:
logger.error("task failed")
branch_count = task.name.count('.')
logger.error(f"FAILURE WHEN RUNNING {task.name}")
try:
_write_repro_file(task)
except Exception:
logger.error(
"Error when writing the reproduction zip. Try "
f"reproducing manually with {task.name}'s inputs.")
else:
logger.error(
f"Files for reproducing step saved to: {task.name}_repro.rzip"
)
logger.error(f'{">"*branch_count}START {task.name} log')
logger.error(task.getLogAsString())
logger.error(f'{">"*branch_count}END {task.name} log')
def _topic_cloud_console_link(pubsub_topic: str) -> str:
"""
Given a pubsub topic name (and assuming there's a subscription to it with
the same name), return a url to view the subscription on the browser.
"""
if env_keys.is_aws_service_available():
# FIXME: JIRA-ID
return 'no_link_for_now'
# else GCP
return (
"https://console.cloud.google.com/cloudpubsub/subscription/detail/" +
pubsub_topic + "?project=" + os.environ['SCHRODINGER_GCP_PROJECT'])
[docs]class PubsubEnabledStepMixin:
"""
A mixin that allows a step to be run using PubSub.
Steps with this mixin will have batch settings that have a `use_pubsub`
flag and a `num_pubsub_workers` integer. Flipping `use_pubsub` to on will
have the step load up all its inputs into a pubsub topic before spinning
up `num_pubsub_workers` subjobs that will all take from the input topic,
run the step's computation on it, and upload it to an output topic.
Calling `my_pubsub_step.getOutputs()` will return all the outputs from the
output topic, so to a user this will all be implementation detail.
"""
[docs] def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.setInputTopic(None)
self.setOutputTopic(None)
@property
def topic_prefix(self):
if not hasattr(self, '_topic_prefix'):
self._topic_prefix = os.environ.get(
'SCHRODINGER_PUBSUB_TOPIC_PREFIX', '')
return self._topic_prefix
@property
def topic_suffix(self):
if not hasattr(self, '_topic_suffix'):
self._topic_suffix = os.environ.get(
'SCHRODINGER_PUBSUB_TOPIC_SUFFIX',
str(uuid.uuid4())[:6])
return self._topic_suffix
@property
def cloud_service_script(self):
if env_keys.is_aws_service_available():
return ['sqs.py']
return ['python3', '-m', 'schrodinger.stepper._cloud.gcp']
[docs] @_assert_step_hasnt_started
def outputs(self):
if self.usingPubsub():
self.initializeTopics()
self._runWithPubsub()
return self._deserializeFromOutputTopic()
else:
return super().outputs()
[docs] def usingPubsub(self):
return False
def _generateInputTopicName(self):
return self._generateTopicName('inputs')
def _generateOutputTopicName(self):
return self._generateTopicName('outputs')
def _generateTopicName(self, topic_type):
if env_keys.is_aws_service_available():
step_id_limit = TOPIC_STEP_ID_LIMIT_FOR_AWS
else:
step_id_limit = TOPIC_STEP_ID_LIMIT_FOR_GCP
sections = [
self.topic_prefix[:TOPIC_PREFIX_LIMIT],
self.getStepId()[:step_id_limit], topic_type,
self.topic_suffix[:TOPIC_SUFFIX_LIMIT]
]
return '_'.join(sections).strip('_')
[docs] def getOutputTopic(self) -> Optional[str]:
if isinstance(self, Chain) and len(self):
return self._output_topic or self[-1].getOutputTopic()
else:
return self._output_topic
[docs] def setOutputTopic(self, outp_topic: Optional[str]):
self._output_topic = outp_topic
[docs] def initializeTopics(self):
batch_settings = self._batch_settings
if batch_settings is None:
raise RuntimeError(
"Can't initialize topics for a step that's not "
"using pubsub. To use pubsub for a step, set batch settings "
"on it that have `use_pubsub` set to True.")
if batch_settings.use_pubsub is False:
raise RuntimeError(
"Can't initialize topics for a step that's not "
"using pubsub. To use pubsub for a step, set batch settings "
"on it that have `use_pubsub` set to True.")
script = self.cloud_service_script
if self.getInputTopic() is None:
inp_topic = self._generateInputTopicName()
self._input_topic = inp_topic
subprocess.run(
[SCHRODINGER_RUN, *script, 'create', inp_topic, inp_topic])
self._uploadToTopic(self._inputsWithCounting(),
self._getInputSerializer(), inp_topic)
if self.getOutputTopic() is None:
outp_topic = self._generateOutputTopicName()
self.setOutputTopic(outp_topic)
subprocess.run(
[SCHRODINGER_RUN, *script, 'create', outp_topic, outp_topic])
def _uploadToTopic(self, generator, serializer, topic):
inp_fname = f"{topic}_msgs.txt"
serializer.serialize(generator, inp_fname)
subprocess.run([
SCHRODINGER_RUN, *self.cloud_service_script, 'upload', topic,
inp_fname
])
def _downloadFromTopic(self, topic, fname):
subprocess.run([
SCHRODINGER_RUN, *self.cloud_service_script, 'download', topic,
fname
])
def _runWithPubsub(self):
self._start_time = time.time()
batch_settings = self._batch_settings
tasks = []
double_batch = batch_settings.num_pubsub_workers > DOUBLE_BATCH_THRESHOLD
if double_batch:
num_workers = math.ceil(batch_settings.num_pubsub_workers /
DOUBLE_BATCH_THRESHOLD)
base_worker_name = f'{self.getStepId()}_worker_launcher'
batch_settings.num_pubsub_workers = DOUBLE_BATCH_THRESHOLD
worker_class = _PubSubWorkerLauncherTask
else:
num_workers = batch_settings.num_pubsub_workers
base_worker_name = f'{self.getStepId()}_worker'
worker_class = _PubSubWorkerTask
for idx in range(num_workers):
task = worker_class(step=copy.copy(self))
task.job_config.host_settings.host = hosts.Host(
batch_settings.hostname)
task.input.input_topic = self.getInputTopic()
task.input.output_topic = self.getOutputTopic()
if batch_settings.size is not None:
task.input.batch_size = batch_settings.size
for req_license, num_tokens in self.getLicenseRequirements().items(
):
task.addLicenseReservation(req_license, num_tokens)
tasks.append(task)
task.taskDone.connect(self._onTaskDone)
task.taskStarted.connect(self._onTaskStarted)
task.taskFailed.connect(self._onTaskFailed)
successful_tasks = queue.run_tasks_in_parallel(
tasks, basename=base_worker_name)
msgs_pulled = sum(t.output.num_inputs for t in successful_tasks)
msgs_pushed = sum(t.output.num_outputs for t in successful_tasks)
if (self._input_count != 0 and self._input_count != msgs_pulled):
logger.warning(
f"{self.getStepId()}: The number of messages uploaded to the input topic "
f"({self._input_count}) was not equal to the number of "
f"messages pulled and processed ({msgs_pulled})")
self._input_count = msgs_pulled
self._output_count = msgs_pushed
self._end_time = time.time()
self._updateRunInfo()
run_info = self._run_info[self.getStepId()]
inp_topic = self.getInputTopic()
run_info['input_topic'] = inp_topic
run_info['input_topic_link'] = _topic_cloud_console_link(inp_topic)
outp_topic = self.getOutputTopic()
run_info['output_topic'] = outp_topic
run_info['output_topic_link'] = _topic_cloud_console_link(outp_topic)
def _deserializeFromTopic(self, serializer, topic):
topic_download_file = f"{topic}_msgs_{str(uuid.uuid4())[:6]}.txt"
self._downloadFromTopic(topic, topic_download_file)
for output in serializer.deserialize(topic_download_file):
yield output
def _deserializeFromInputTopic(self):
yield from self._deserializeFromTopic(self._getInputSerializer(),
self.getInputTopic())
def _deserializeFromOutputTopic(self):
yield from self._deserializeFromTopic(self.getOutputSerializer(),
self.getOutputTopic())
def _onTaskDone(self):
pass
#task = self.sender()
#_clean_up_task(task)
def _onTaskStarted(self):
task = self.sender()
print(f'Batch {task.name} started')
def _onTaskFailed(self):
task = self.sender()
print(f'Batch {task.name} failed!')
try:
print(task.getLogAsString().strip())
except Exception as e:
print(f"{e} raised while trying to print failed task's log")
class _BatchableStepMixin(PubsubEnabledStepMixin, _BatchableStepMixin):
def usingPubsub(self):
return bool(self._batch_settings and self._batch_settings.use_pubsub)
[docs]class UnbatchedReduceStep(_BaseStep):
""""
An unbatchable ReduceStep. See ReduceStep for more information.
"""
def _makeOutputGenerator(self):
self._start_time = time.time()
FORMATTER.start()
return self.reduceFunction(self._inputsWithCounting())
def _inputsWithCounting(self):
self._updateRunInfo()
if self._inputs is None:
raise RuntimeError(
f"Inputs have not been set for {self.getStepId()}")
for input in self._inputs:
self._input_count += 1
yield input
[docs] def reduceFunction(self, inputs):
raise NotImplementedError
[docs]class ReduceStep(_BatchableStepMixin, UnbatchedReduceStep):
""" <_reduce_step_>
A computational step that performs a function on a collection of inputs
to produce output items.
To construct a ReduceStep:
* Implement reduceFunction
* Define Input (the type expected by the mapFunction)
* Define Output (the type of item produced by the mapFunction)
* Define Settings (data class for any settings needed by the
mapFunction)
"""
[docs] def reduceFunction(self, inputs):
"""
The main computation for this step. This function should take in a
iterable of inputs and return an iterable of outputs.
Example::
def reduceFunction(self, words):
# Find all unique words
seen_words = set()
for word in words:
if word not in seen_words:
seen_words.add(word)
yield word
"""
return super().reduceFunction(inputs)
[docs]class UnbatchedMapStep(UnbatchedReduceStep):
""" <_unbatchability_>
An unbatchable MapStep. See MapStep for more information.
"""
[docs] def reduceFunction(self, inputs):
for input in inputs:
for output in self.mapFunction(input):
yield output
[docs] def mapFunction(self, input):
raise NotImplementedError()
[docs]class MapStep(_BatchableStepMixin, UnbatchedMapStep):
""" <_map_step_>
A computational step that performs a function on input items from an input
source to produce output items.
To construct a MapStep:
* Implement mapFunction
* Define Input (the type expected by the mapFunction)
* Optionally define a InputSerializer (see `Serializer` for more info.)
* Define Output (the type of item produced by the mapFunction)
* Optionally define a OutputSerializer (see `Serializer` for more info.)
* Define Settings (data class for any settings needed by the mapFunction)
"""
[docs] def mapFunction(self, input):
"""
The main computation for this step. This function should take in a
single input item and return an iterable of outputs. This allows a
single output to produce multiple ouputs (e.g. enumeration).
The output may be yielded as a generator, in order to reduce memory
usage.
If only a single output is produced for each input, return it as a
single-element list.
:param input: this will be a single input item from the input source.
Implementer is encouraged to use a more descriptive, context-
specific variable name. Example:
def mapFunction(self, starting_smiles):
...
"""
return super().mapFunction(input)
[docs]class UnbatchedChain(UnbatchedReduceStep):
@property
def Input(self):
if not self._steps:
return super().Input
return self[0].Input
@property
def Output(self):
if not self._steps:
return super().Output
return self[-1].Output
@property
def InputSerializer(self):
if not self._steps:
return super().InputSerializer
return self[0].InputSerializer
@property
def OutputSerializer(self):
if not self._steps:
return super().OutputSerializer
return self[-1].OutputSerializer
# Since the serializers are just inferred from the steps and the steps
# have their serializers validated, we don't do it at chain declaration
# level.
@classmethod
def _validateInputSerializer(cls):
pass
@classmethod
def _validateOutputSerializer(cls):
pass
def __copy__(self):
copied_step = super().__copy__()
copied_step.setStartingStep(self._starting_step_id)
return copied_step
[docs] def setStartingStep(self, starting_step: str):
if starting_step is not None:
self._validateStartingStepId(starting_step)
self._starting_step_id = starting_step
[docs] def validateSettings(self):
"""
Check whether the chain settings are valid and return a list of
`SettingsError` and `SettingsWarning` to report any invalid settings.
Default implementation simply returns problems from all child steps.
:rtype: list[TaskError or TaskWarning]
"""
problems = []
for step in self:
problems += step.validateSettings()
return problems
[docs] def getResources(self, param_type, resource_type):
"""
Get the stepper resources in the settings for the chain as well as for
every step in the chain that are instances of `param_type` and have a
resource_type attribute that is `resource_type`.
Note does not work for list/set/tuple subparams in the settings.
:param param_type: the resource parameter type
:type param_type: _StepperResource
:param resource_type: the type of resource to get
:type resource_type: ResourceType
:return: the set of stepper resources of `resource_type`
:rtype: set of _StepperResource
"""
resources = super().getResources(param_type, resource_type)
for step in self:
resources |= step.getResources(param_type, resource_type)
return resources
[docs] def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.setStartingStep(None)
self._updateChain()
def __getitem__(self, idx):
return self._steps[idx]
def _setStepId(self, new_id):
super()._setStepId(new_id)
self._updateChain()
[docs] def __len__(self):
return len(self._steps)
def _setConfig(self, config):
super()._setConfig(config)
self._updateChain()
def _getCanonicalizedConfig(self):
"""
Return a config that can be used to set the settings for a different
instance of this chain and its substeps to the same settings as this
chain and its substeps.
"""
config = super()._getCanonicalizedConfig()
for child_step in self:
config.update(child_step._getCanonicalizedConfig())
return config
def _updateChain(self):
self._steps = []
self.buildChain()
self._updateComponentStepIDs()
self._updateComponentStepConfigs()
self.validateChain()
def _updateComponentStepIDs(self):
step_type_counter = collections.Counter()
for step in self:
step_count = step_type_counter[type(step)]
step._setStepId(
f'{self._step_id}.{type(step).__name__}_{step_count}')
step_type_counter[type(step)] += 1
[docs] def addStep(self, step):
self._steps.append(step)
step._setCompositionPath(self._comp_path + '>' + step._comp_path)
step._setRunInfo(self._run_info)
def _updateComponentStepConfigs(self):
for step in self:
step._setConfig(self._config)
[docs] def report(self, prefix=''):
"""
Report the workflow steps and their settings (recursively).
:param prefix: the text to start each line with
:type prefix: str
"""
super().report(prefix)
for step in self:
step.report(prefix + ' ')
[docs] def validateChain(self):
"""
Checks that the declaration of the chain is internally consistent - i.e.
that each step is valid and each step's Input class matches the
preceding step's Output class.
"""
if len(self) == 0:
return
for prev_step, next_step in more_itertools.pairwise(self):
err_msg = (f"Mismatched Input and Output.\n"
f"Previous step: {prev_step}\n"
f"Output: {prev_step.Output}\n"
f"Next step: {next_step}\n"
f"Input: {next_step.Input}\n")
if None in (next_step.Input, prev_step.Output):
assert prev_step.Output is next_step.Input, err_msg
else:
assert prev_step.Output == next_step.Input or issubclass(
prev_step.Output, next_step.Input), err_msg
first_step = self[0]
msg = (f'Mismatched input of first step. The Input for the chain'
f'("{type(self).__name__}") is specified as {self.Input}'
' but the Input for the first step '
f'("{type(first_step).__name__}") is {first_step.Input}')
assert first_step.Input is self.Input, msg
last_step = self[-1]
msg = (f'Mismatched output of last step. The Output for the chain'
f'("{type(self).__name__}") is specified as {self.Output}'
' but the Output for the last step '
f'("{type(last_step).__name__}") is {last_step.Output}')
assert last_step.Output is self.Output, msg
def _validateStartingStepId(self, step_id: str):
"""
Checks to see if the `step_id` actually matches a step in this chain.
If not, raise a ValueError.
"""
if step_id == self.getStepId():
return
for idx, step in enumerate(self):
if step_id.startswith(step.getStepId()):
if isinstance(step, Chain):
step._validateStartingStepId(step_id)
break
else:
if step.getStepId() == step_id:
break
else:
raise ValueError("Invalid starting step ID: " + step_id)
[docs] def reduceFunction(self, inputs):
self._updateChain()
if len(self) == 0:
return inputs
# Determine starting step and propagate starting step id
starting_step_id = self._starting_step_id
starting_step_idx = 0
if starting_step_id is not None:
for idx, step in enumerate(self):
if self._starting_step_id.startswith(step.getStepId()):
starting_step_idx = idx
break
starting_step = self[starting_step_idx]
if starting_step_id and isinstance(starting_step, Chain):
starting_step.setStartingStep(starting_step_id)
# Set inputs, whether by input topic or by generator
if (isinstance(starting_step, PubsubEnabledStepMixin) and
self._input_topic):
starting_step.setInputTopic(self._input_topic)
else:
starting_step.setInputs(inputs)
for prev_step, next_step in more_itertools.pairwise(
self[starting_step_idx:]):
self._connectSteps(prev_step, next_step)
# Set outputs
last_step = self[-1]
return last_step.outputs()
def _connectSteps(self, prev_step, next_step):
output_gen = prev_step.outputs()
prev_has_output_topic = (isinstance(prev_step, PubsubEnabledStepMixin)
and prev_step.getOutputTopic() is not None)
compatible_serializers = prev_step.OutputSerializer is next_step.InputSerializer
next_using_pubsub = isinstance(next_step, PubsubEnabledStepMixin)
if (prev_has_output_topic and compatible_serializers and
next_using_pubsub):
next_step.setInputTopic(prev_step.getOutputTopic())
else:
next_step.setInputs(output_gen)
[docs] def buildChain(self):
"""
This method must be implemented by subclasses to build the chain. The
chain is built by modifying self.steps. The chain's composition may be
dependent on self.settings.
"""
raise NotImplementedError()
[docs]class Chain(_BatchableStepMixin, UnbatchedChain):
""" <_chain_>
Run a series of steps. The steps must be created by overriding buildChain.
"""
[docs] def getLicenseRequirements(self):
req_licenses = collections.Counter()
for step in self:
if not (isinstance(step, _BatchableStepMixin) and
step._batch_settings is not None):
req_licenses = req_licenses | collections.Counter(
step.getLicenseRequirements())
return dict(req_licenses)
def _dehydrateStep(self):
dehyd = super()._dehydrateStep()
dehyd.starting_step_id = self._starting_step_id
return dehyd
@classmethod
def _rehydrateStep(cls, dehydrated_step: _DehydratedStep) -> 'Chain':
"""
Recreate the step that `dehydrated_step` was created from.
"""
step = super()._rehydrateStep(dehydrated_step)
step.setStartingStep(dehydrated_step.starting_step_id)
return step
def _line_count(filename):
count = 0
with open(filename, 'r') as file:
for line in file:
count += 1
return count
### Debugging helper methods, not for use in production.
def _get_all_stepper_input_files():
input_file_pattern = os.path.join('**', '*.in')
return glob.glob(input_file_pattern, recursive=True)
def _get_all_stepper_output_files():
output_file_pattern = os.path.join('**', '*.out')
return glob.glob(output_file_pattern, recursive=True)
def _get_all_stepper_zip_files():
output_file_pattern = os.path.join('**', '*.rzip')
return glob.glob(output_file_pattern, recursive=True)
def _write_repro_file(steptask):
"""
Write a rzip with...
- the input file for the step
- the yaml config file for the step
- a command for rerunning the step with the above input files
- any necessary settings files/folders
"""
repro_fname = f'{steptask.name}_repro.rzip'
with zipfile.ZipFile(repro_fname, 'w') as repro_zipfile:
dehyd_step = steptask._step._dehydrateStep()
for step_id, step_settings in dehyd_step.step_config.items():
if step_id.startswith(steptask._step.getStepId()):
for name, value in step_settings.items():
if isinstance(value, StepperFile):
repro_zipfile.write(value, value)
elif isinstance(value, StepperFolder):
for root, _, files in os.walk(value):
for filename in files:
src_path = os.path.join(root, filename)
repro_zipfile.write(src_path)
yaml_fname = f'{steptask.name}.yaml'
with open(yaml_fname, 'w') as yaml_file:
yaml.dump(dict(dehyd_step.step_config), yaml_file)
cmd_fname = f'{steptask.name}.sh'
with open(cmd_fname, 'w') as cmd_file:
cmd_file.write(
f'$SCHRODINGER/run stepper.py '
f'{dehyd_step.step_module_path}.{dehyd_step.step_class_name} '
f'{dehyd_step.input_file} bad_step.out -config {yaml_fname} '
f'-workflow-id {dehyd_step.step_id}')
repro_zipfile.write(dehyd_step.input_file,
os.path.basename(dehyd_step.input_file))
repro_zipfile.write(yaml_fname)
repro_zipfile.write(cmd_fname)
def _get_stepper_debug_files():
# Return all stepper repro zip files
return _get_all_stepper_zip_files()