# -*- coding: utf-8 -*-
'''
# Third-party code. No Schrodinger Copyright.
*GSASIIlattice: Unit cells*
---------------------------
Perform lattice-related computations
Note that *G* is the reciprocal lattice tensor, and *g* is its inverse,
:math:`G = g^{-1}`, where
  .. math::
   g = \\left( \\begin{matrix}
   a^2 & a b\\cos gamma & a c\\cos\\beta \\\\
   a b\\cos\\gamma & b^2 & b c  cos\\alpha \\\\
   a c\\cos\\beta &  b c \\cos\\alpha & c^2
   \\end{matrix}\\right)
The "*A* tensor" terms are defined as
:math:`A = (\\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\\end{matrix})` and *A* can be used in this fashion:
:math:`d^* = sqrt {A_1 h^2 + A_2 k^2 + A_3 l^2 + A_4 hk + A_5 hl + A_6 kl}`, where
*d* is the d-spacing, and :math:`d^*` is the reciprocal lattice spacing,
:math:`Q = 2 \\pi d^* = 2 \\pi / d`
'''
########### SVN repository information ###################
# $Date: 2019-04-11 16:59:48 -0400 (Thu, 11 Apr 2019) $
# $Author: vondreele $
# $Revision: 3888 $
# $URL: https://subversion.xray.aps.anl.gov/pyGSAS/trunk/GSASIIlattice.py $
# $Id: GSASIIlattice.py 3888 2019-04-11 20:59:48Z vondreele $
########### SVN repository information ###################
# flake8: noqa
import copy
import math
import random as ran
import sys
import numpy as np
import numpy.linalg as nl
from . import GSASIIElem as G2elem
from . import GSASIImath as G2mth
from . import GSASIIspc as G2spc
# trig functions in degrees
sind = lambda x: np.sin(x * np.pi / 180.)
asind = lambda x: 180. * np.arcsin(x) / np.pi
tand = lambda x: np.tan(x * np.pi / 180.)
atand = lambda x: 180. * np.arctan(x) / np.pi
atan2d = lambda y, x: 180. * np.arctan2(y, x) / np.pi
cosd = lambda x: np.cos(x * np.pi / 180.)
acosd = lambda x: 180. * np.arccos(x) / np.pi
rdsq2d = lambda x: 1.0 / np.sqrt(x)
rpd = np.pi / 180.
RSQ2PI = 1. / np.sqrt(2. * np.pi)
SQ2 = np.sqrt(2.)
RSQPI = 1. / np.sqrt(np.pi)
R2pisq = 1. / (2. * np.pi**2)
nxs = np.newaxis
[docs]def sec2HMS(sec):
    """Convert time in sec to H:M:S string
    :param sec: time in seconds
    :return: H:M:S string (to nearest 100th second)
    """
    H = int(sec // 3600)
    M = int(sec // 60 - H * 60)
    S = sec - 3600 * H - 60 * M
    return '%d:%2d:%.2f' % (H, M, S) 
[docs]def rotdMat(angle, axis=0):
    """Prepare rotation matrix for angle in degrees about axis(=0,1,2)
    :param angle: angle in degrees
    :param axis:  axis (0,1,2 = x,y,z) about which for the rotation
    :return: rotation matrix - 3x3 numpy array
    """
    if axis == 2:
        return np.array([[cosd(angle), -sind(angle), 0],
                         [sind(angle), cosd(angle), 0], [0, 0, 1]])
    elif axis == 1:
        return np.array([[cosd(angle), 0, -sind(angle)], [0, 1, 0],
                         [sind(angle), 0, cosd(angle)]])
    else:
        return np.array([[1, 0, 0], [0, cosd(angle), -sind(angle)],
                         [0, sind(angle), cosd(angle)]]) 
[docs]def rotdMat4(angle, axis=0):
    """Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL
    :param angle: angle in degrees
    :param axis:  axis (0,1,2 = x,y,z) about which for the rotation
    :return: rotation matrix - 4x4 numpy array (last row/column for openGL scaling)
    """
    Mat = rotdMat(angle, axis)
    return np.concatenate((np.concatenate((Mat, [[0], [0], [0]]), axis=1), [
        [0, 0, 0, 1],
    ]),
                          axis=0) 
[docs]def fillgmat(cell):
    """Compute lattice metric tensor from unit cell constants
    :param cell: tuple with a,b,c,alpha, beta, gamma (degrees)
    :return: 3x3 numpy array
    """
    a, b, c, alp, bet, gam = cell
    g = np.array([[a * a, a * b * cosd(gam), a * c * cosd(bet)],
                  [a * b * cosd(gam), b * b, b * c * cosd(alp)],
                  [a * c * cosd(bet), b * c * cosd(alp), c * c]])
    return g 
[docs]def cell2Gmat(cell):
    """Compute real and reciprocal lattice metric tensor from unit cell constants
    :param cell: tuple with a,b,c,alpha, beta, gamma (degrees)
    :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)
    """
    g = fillgmat(cell)
    G = nl.inv(g)
    return G, g 
[docs]def A2Gmat(A, inverse=True):
    """Fill real & reciprocal metric tensor (G) from A.
    :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
    :param bool inverse: if True return both G and g; else just G
    :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)
    """
    G = np.array([[A[0], A[3] / 2., A[4] / 2.], [A[3] / 2., A[1], A[5] / 2.],
                  [A[4] / 2., A[5] / 2., A[2]]])
    if inverse:
        g = nl.inv(G)
        return G, g
    else:
        return G 
[docs]def Gmat2A(G):
    """Extract A from reciprocal metric tensor (G)
    :param G: reciprocal maetric tensor (3x3 numpy array
    :return: A = [G11,G22,G33,2*G12,2*G13,2*G23]
    """
    return [G[0][0], G[1][1], G[2][2], 2. * G[0][1], 2. * G[0][2], 2. * G[1][2]] 
[docs]def cell2A(cell):
    """Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters
    :param cell: [a,b,c,alpha,beta,gamma] (degrees)
    :return: G reciprocal metric tensor as 3x3 numpy array
    """
    G, g = cell2Gmat(cell)
    return Gmat2A(G) 
[docs]def A2cell(A):
    """Compute unit cell constants from A
    :param A: [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor
    :return: a,b,c,alpha, beta, gamma (degrees) - lattice parameters
    """
    G, g = A2Gmat(A)
    return Gmat2cell(g) 
[docs]def Gmat2cell(g):
    """Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G)
    The math works the same either way.
    :param g (or G): real (or reciprocal) metric tensor 3x3 array
    :return: a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees)
    """
    oldset = np.seterr('raise')
    a = np.sqrt(max(0, g[0][0]))
    b = np.sqrt(max(0, g[1][1]))
    c = np.sqrt(max(0, g[2][2]))
    alp = acosd(g[2][1] / (b * c))
    bet = acosd(g[2][0] / (a * c))
    gam = acosd(g[0][1] / (a * b))
    np.seterr(**oldset)
    return a, b, c, alp, bet, gam 
[docs]def invcell2Gmat(invcell):
    """Compute real and reciprocal lattice metric tensor from reciprocal
       unit cell constants
    :param invcell: [a*,b*,c*,alpha*, beta*, gamma*] (degrees)
    :return: reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays)
    """
    G = fillgmat(invcell)
    g = nl.inv(G)
    return G, g 
[docs]def cellDijFill(pfx, phfx, SGData, parmDict):
    '''Returns the filled-out reciprocal cell (A) terms
    from the parameter dictionaries corrected for Dij.
    :param str pfx: parameter prefix ("n::", where n is a phase number)
    :param dict SGdata: a symmetry object
    :param dict parmDict: a dictionary of parameters
    :returns: A,sigA where each is a list of six terms with the A terms
    '''
    if SGData['SGLaue'] in [
            '-1',
    ]:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'],
            parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'],
            parmDict[pfx + 'A3'] + parmDict[phfx + 'D12'],
            parmDict[pfx + 'A4'] + parmDict[phfx + 'D13'],
            parmDict[pfx + 'A5'] + parmDict[phfx + 'D23']
        ]
    elif SGData['SGLaue'] in [
            '2/m',
    ]:
        if SGData['SGUniq'] == 'a':
            A = [
                parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
                parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'],
                parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0,
                parmDict[pfx + 'A5'] + parmDict[phfx + 'D23']
            ]
        elif SGData['SGUniq'] == 'b':
            A = [
                parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
                parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'],
                parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0,
                parmDict[pfx + 'A4'] + parmDict[phfx + 'D13'], 0
            ]
        else:
            A = [
                parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
                parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'],
                parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'],
                parmDict[pfx + 'A3'] + parmDict[phfx + 'D12'], 0, 0
            ]
    elif SGData['SGLaue'] in [
            'mmm',
    ]:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'],
            parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0, 0
        ]
    elif SGData['SGLaue'] in ['4/m', '4/mmm']:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0, 0
        ]
    elif SGData['SGLaue'] in ['6/m', '6/mmm', '3m1', '31m', '3']:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], 0, 0
        ]
    elif SGData['SGLaue'] in ['3R', '3mR']:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A3'] + parmDict[phfx + 'D23'],
            parmDict[pfx + 'A3'] + parmDict[phfx + 'D23'],
            parmDict[pfx + 'A3'] + parmDict[phfx + 'D23']
        ]
    elif SGData['SGLaue'] in ['m3m', 'm3']:
        A = [
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'],
            parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], 0, 0, 0
        ]
    return A 
[docs]def prodMGMT(G, Mat):
    '''Transform metric tensor by matrix
    :param G: array metric tensor
    :param Mat: array transformation matrix
    :return: array new metric tensor
    '''
    return np.inner(np.inner(Mat, G), Mat)  #right 
#    return np.inner(Mat,np.inner(Mat,G))       #right
#    return np.inner(np.inner(G,Mat).T,Mat)      #right
#    return np.inner(Mat,np.inner(G,Mat).T)     #right
[docs]def ExpandCell(Atoms, atCodes, cx, Trans):
    Unit = [int(max(abs(np.array(unit))) - 1) for unit in Trans.T]
    for i, unit in enumerate(Unit):
        if unit > 0:
            for j in range(unit):
                moreAtoms = copy.deepcopy(Atoms)
                moreCodes = []
                for atom, code in zip(moreAtoms, atCodes):
                    atom[cx + i] += 1.
                    if '+' in code:
                        cell = list(eval(code.split('+')[1]))
                        ops = code.split('+')[0]
                    else:
                        cell = [0, 0, 0]
                        ops = code
                    cell[i] += 1
                    moreCodes.append('%s+%d,%d,%d' %
                                     (ops, cell[0], cell[1], cell[2]))
                Atoms += moreAtoms
                atCodes += moreCodes
    return Atoms, atCodes 
[docs]def FindNonstandard(controls, Phase):
    '''
    Find nonstandard setting of magnetic cell that aligns with parent nuclear cell
    :param controls: list unit cell indexing controls
    :param Phase: dict new magnetic phase data (NB:not G2 phase construction); modified here
    :return: None
    '''
    abc = np.eye(3)
    cba = np.rot90(np.eye(3))
    cba[1, 1] *= -1  #makes c-ba
    Mats = {
        'abc': abc,
        'cab': np.roll(abc, 2, 1),
        'bca': np.roll(abc, 1, 1),
        'acb': np.roll(cba, 1, 1),
        'bac': np.roll(cba, 2, 1),
        'cba': cba
    }  #ok
    BNS = {
        'A': {
            'abc': 'A',
            'cab': 'C',
            'bca': 'B',
            'acb': 'A',
            'bac': 'B',
            'cba': 'C'
        },
        'B': {
            'abc': 'B',
            'cab': 'A',
            'bca': 'C',
            'acb': 'C',
            'bac': 'A',
            'cba': 'B'
        },
        'C': {
            'abc': 'C',
            'cab': 'B',
            'bca': 'A',
            'acb': 'B',
            'bac': 'C',
            'cba': 'A'
        },
        'a': {
            'abc': 'a',
            'cab': 'c',
            'bca': 'b',
            'acb': 'a',
            'bac': 'b',
            'cba': 'c'
        },  #Ok
        'b': {
            'abc': 'b',
            'cab': 'a',
            'bca': 'c',
            'acb': 'c',
            'bac': 'a',
            'cba': 'b'
        },
        'c': {
            'abc': 'c',
            'cab': 'b',
            'bca': 'a',
            'acb': 'b',
            'bac': 'c',
            'cba': 'a'
        },
        'S': {
            'abc': 'S',
            'cab': 'S',
            'bca': 'S',
            'acb': 'S',
            'bac': 'S',
            'cba': 'S'
        },
        'I': {
            'abc': 'I',
            'cab': 'I',
            'bca': 'I',
            'acb': 'I',
            'bac': 'I',
            'cba': 'I'
        },
    }
    Trans = Phase['Trans']
    Uvec = Phase['Uvec']
    SGData = Phase['SGData']
    MSG = SGData.get('MagSpGrp', SGData['SpGrp']).split(' ', 1)
    MSG[0] += ' '
    bns = ''
    if '_' in MSG[0]:
        bns = MSG[0][2]
    spn = SGData.get('SGSpin', [])
    if 'ortho' in SGData['SGSys']:
        lattSym = G2spc.getlattSym(Trans)
        SpGrp = SGData['SpGrp']
        NTrans = np.inner(Mats[lattSym].T, Trans.T)  #ok
        if len(spn):
            spn[1:4] = np.inner(np.abs(nl.inv(Mats[lattSym])), spn[1:4])  #ok
        SGsym = G2spc.getlattSym(nl.inv(Mats[lattSym]))
        if lattSym != 'abc':
            NSG = G2spc.altSettingOrtho[SpGrp][SGsym].replace("'",
                                                              '').split(' ')
            if ' '.join(NSG) in [
                    'P 2 21 2',
            ]:
                Uvec[1] += .25
            elif ' '.join(NSG) in [
                    'P 21 2 2',
            ]:
                Uvec[0] += .25
            elif ' '.join(NSG) in [
                    'P 2 2 21',
            ]:
                Uvec[2] += .25
            Bns = ''
            if bns:
                Bns = BNS[bns][lattSym]
                NSG[0] += '_' + Bns + ' '
            elif len(spn):
                for ifld in [1, 2, 3]:
                    if spn[ifld] < 0:
                        NSG[ifld] += "'"
            Nresult = [''.join(NSG) + '  ', Bns]
            return Nresult, Uvec, NTrans
        else:
            return None
    elif 'mono' in SGData[
            'SGSys']:  # and not 'P_A' in Phase['Name']:  #skip the one that doesn't work
        newcell = TransformCell(controls[6:12], Trans)
        MatsA = np.array([[1., 0., 0.], [0., 1., 0.], [1., 0, 1.]])
        MatsB = np.array([[1., 0., 0.], [0., 1., 0.], [-1., 0, 1.]])
        if not 70. < newcell[4] < 110.:
            MSG[1] = MSG[1].replace('c', 'n')
            MSG[0] = MSG[0].replace('C_c', 'C_B').replace('P_A', 'P ')
            if '_' in MSG[0]:
                bns = MSG[0][2]
            if newcell[4] > 110.:
                if newcell[2] > newcell[0]:
                    Mats = MatsA
                else:
                    MSG[1] = MSG[1].replace('n', 'c')
                    MSG[0] = MSG[0].replace('C ', 'I ')
                    Mats = MatsA.T
            elif newcell[4] < 70.:
                if newcell[2] > newcell[0]:
                    Mats = MatsB
                else:
                    MSG[1] = MSG[1].replace('n', 'c')
                    MSG[0] = MSG[0].replace('C ', 'I ')
                    Mats = MatsB.T
            Nresult = [' '.join(MSG) + ' ', bns]
            NTrans = np.inner(Mats, Trans.T)
            return Nresult, Uvec, NTrans
    return None 
[docs]def makeBilbaoPhase(result, uvec, trans, ifMag=False):
    phase = {}
    phase['Name'] = result[0].strip()
    phase['Uvec'] = uvec
    phase['Trans'] = trans
    phase['Keep'] = False
    phase['Use'] = False
    phase['aType'] = ''
    SpGp = result[0].replace("'", '')
    SpGrp = G2spc.StandardizeSpcName(SpGp)
    phase['SGData'] = G2spc.SpcGroup(SpGrp)[1]
    if ifMag:
        BNSlatt = phase['SGData']['SGLatt']
        if not result[1]:
            phase['SGData']['SGSpin'] = G2spc.GetSGSpin(phase['SGData'],
                                                        result[0])
        phase['SGData']['GenSym'], phase['SGData'][
            'GenFlg'], BNSsym = G2spc.GetGenSym(phase['SGData'])
        if result[1]:
            BNSlatt += '_' + result[1]
            if 'P_S' in BNSlatt:
                BNSlatt = 'P_c'  #triclinic fix
            phase['SGData']['BNSlattsym'] = [BNSlatt, BNSsym[BNSlatt]]
            G2spc.ApplyBNSlatt(phase['SGData'], phase['SGData']['BNSlattsym'])
        phase['SGData']['SpnFlp'] = G2spc.GenMagOps(phase['SGData'])[1]
        phase['SGData']['MagSpGrp'] = G2spc.MagSGSym(phase['SGData'])
    return phase 
[docs]def FillUnitCell(Phase):
    Atoms = copy.deepcopy(Phase['Atoms'])
    atomData = []
    atCodes = []
    SGData = Phase['General']['SGData']
    SpnFlp = SGData.get('SpnFlp', [])
    Amat, Bmat = cell2AB(Phase['General']['Cell'][1:7])
    cx, ct, cs, cia = Phase['General']['AtomPtrs']
    cm = 0
    if Phase['General']['Type'] == 'magnetic':
        cm = cx + 4
    for iat, atom in enumerate(Atoms):
        XYZ = np.array(atom[cx:cx + 3])
        xyz = XYZ % 1.
        if atom[cia] == 'A':
            Uij = atom[cia + 2:cia + 8]
            result = G2spc.GenAtom(xyz, SGData, False, Uij, True)
            for item in result:
                if item[0][2] >= .95:
                    item[0][2] -= 1.
                atom[cx:cx + 3] = item[0]
                atom[cia + 2:cia + 8] = item[1]
                if cm:
                    Opr = abs(item[2]) % 100
                    M = SGData['SGOps'][Opr - 1][0]
                    opNum = G2spc.GetOpNum(item[2], SGData)
                    mom = np.inner(np.array(atom[cm:cm + 3]), Bmat)
                    atom[cm:cm + 3] = np.inner(np.inner(
                        mom, M), Amat) * nl.det(M) * SpnFlp[opNum - 1]
                atCodes.append('%d:%s' % (iat, str(item[2])))
                atomData.append(atom[:cia + 9])  #not SS stuff
        else:
            result = G2spc.GenAtom(xyz, SGData, False, Move=True)
            for item in result:
                if item[0][2] >= .95:
                    item[0][2] -= 1.
                atom[cx:cx + 3] = item[0]
                if cm:
                    Opr = abs(item[1]) % 100
                    M = SGData['SGOps'][Opr - 1][0]
                    opNum = G2spc.GetOpNum(item[1], SGData)
                    mom = np.inner(np.array(atom[cm:cm + 3]), Bmat)
                    atom[cm:cm + 3] = np.inner(np.inner(
                        mom, M), Amat) * nl.det(M) * SpnFlp[opNum - 1]
                atCodes.append('%d:%s' % (iat, str(item[1])))
                atomData.append(atom[:cia + 9])  #not SS stuff
    return atomData, atCodes 
[docs]def GetUnique(Phase, atCodes):
    def noDuplicate(xyzA, XYZ):
        if True in [
                np.allclose(xyzA % 1., xyzB % 1., atol=0.0002) for xyzB in XYZ
        ]:
            return False
        return True
    cx, ct = Phase['General']['AtomPtrs'][:2]
    SGData = Phase['General']['SGData']
    Atoms = Phase['Atoms']
    Ind = len(Atoms)
    newAtoms = []
    newAtCodes = []
    Indx = {}
    XYZ = {}
    for ind in range(Ind):
        XYZ[ind] = np.array(Atoms[ind][cx:cx + 3]) % 1.
        Indx[ind] = True
    for ind in range(Ind):
        if Indx[ind]:
            xyz = XYZ[ind]
            for jnd in range(Ind):
                if Atoms[ind][ct - 1] == Atoms[jnd][ct - 1]:
                    if ind != jnd and Indx[jnd]:
                        Equiv = G2spc.GenAtom(XYZ[jnd], SGData, Move=True)
                        xyzs = np.array([equiv[0] for equiv in Equiv])
                        Indx[jnd] = noDuplicate(xyz, xyzs)
    Ind = []
    for ind in Indx:
        if Indx[ind]:
            newAtoms.append(Atoms[ind])
            newAtCodes.append(atCodes[ind])
    return newAtoms, newAtCodes 
[docs]def calc_rVsq(A):
    """Compute the square of the reciprocal lattice volume (1/V**2) from A'
    """
    G, g = A2Gmat(A)
    rVsq = nl.det(G)
    if rVsq < 0:
        return 1
    return rVsq 
[docs]def calc_rV(A):
    """Compute the reciprocal lattice volume (V*) from A
    """
    return np.sqrt(calc_rVsq(A)) 
[docs]def calc_V(A):
    """Compute the real lattice volume (V) from A
    """
    return 1. / calc_rV(A) 
[docs]def A2invcell(A):
    """Compute reciprocal unit cell constants from A
    returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees)
    """
    G, g = A2Gmat(A)
    return Gmat2cell(G) 
[docs]def Gmat2AB(G):
    """Computes orthogonalization matrix from reciprocal metric tensor G
    :returns: tuple of two 3x3 numpy arrays (A,B)
       * A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X)
       * B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x)
    """
    #    cellstar = Gmat2cell(G)
    g = nl.inv(G)
    cell = Gmat2cell(g)
    #    A = np.zeros(shape=(3,3))
    return cell2AB(cell) 
#    # from Giacovazzo (Fundamentals 2nd Ed.) p.75
#    A[0][0] = cell[0]                # a
#    A[0][1] = cell[1]*cosd(cell[5])  # b cos(gamma)
#    A[0][2] = cell[2]*cosd(cell[4])  # c cos(beta)
#    A[1][1] = cell[1]*sind(cell[5])  # b sin(gamma)
#    A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta)
#    A[2][2] = 1./cellstar[2]         # 1/c*
#    B = nl.inv(A)
#    return A,B
[docs]def cell2AB(cell):
    """Computes orthogonalization matrix from unit cell constants
    :param tuple cell: a,b,c, alpha, beta, gamma (degrees)
    :returns: tuple of two 3x3 numpy arrays (A,B)
       A for crystal to Cartesian transformations A*x = np.inner(A,x) = X
       B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x
    """
    G, g = cell2Gmat(cell)
    cellstar = Gmat2cell(G)
    A = np.zeros(shape=(3, 3))
    # from Giacovazzo (Fundamentals 2nd Ed.) p.75
    A[0][0] = cell[0]  # a
    A[0][1] = cell[1] * cosd(cell[5])  # b cos(gamma)
    A[0][2] = cell[2] * cosd(cell[4])  # c cos(beta)
    A[1][1] = cell[1] * sind(cell[5])  # b sin(gamma)
    A[1][2] = -cell[2] * cosd(cellstar[3]) * sind(
        cell[4])  # - c cos(alpha*) sin(beta)
    A[2][2] = 1. / cellstar[2]  # 1/c*
    B = nl.inv(A)
    return A, B 
[docs]def HKL2SpAng(H, cell, SGData):
    """Computes spherical coords for hkls; view along 001
    :param array H: arrays of hkl
    :param tuple cell: a,b,c, alpha, beta, gamma (degrees)
    :param dict SGData: space group dictionary
    :returns: arrays of r,phi,psi (radius,inclination,azimuth) about 001
    """
    A, B = cell2AB(cell)
    xH = np.inner(B.T, H)
    r = np.sqrt(np.sum(xH**2, axis=0))
    phi = acosd(xH[2] / r)
    psi = atan2d(xH[1], xH[0])
    phi = np.where(phi > 90., 180. - phi, phi)
    #    GSASIIpath.IPyBreak()
    return r, phi, psi 
[docs]def U6toUij(U6):
    """Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23]
    NB: there is a non numpy version in GSASIIspc: U2Uij
    :param list U6: 6 terms of u11,u22,...
    :returns:
        Uij - numpy [3][3] array of uij
    """
    U = np.array([[U6[0], U6[3], U6[4]], [U6[3], U6[1], U6[5]],
                  [U6[4], U6[5], U6[2]]])
    return U 
[docs]def UijtoU6(U):
    """Fill vector [U11,U22,U33,U12,U13,U23] from Uij
    NB: there is a non numpy version in GSASIIspc: Uij2U
    """
    U6 = np.array([U[0][0], U[1][1], U[2][2], U[0][1], U[0][2], U[1][2]])
    return U6 
[docs]def betaij2Uij(betaij, G):
    """
    Convert beta-ij to Uij tensors
    :param beta-ij - numpy array [beta-ij]
    :param G: reciprocal metric tensor
    :returns: Uij: numpy array [Uij]
    """
    ast = np.sqrt(np.diag(G))  #a*, b*, c*
    Mast = np.multiply.outer(ast, ast)
    return R2pisq * UijtoU6(U6toUij(betaij) / Mast) 
[docs]def Uij2betaij(Uij, G):
    """
    Convert Uij to beta-ij tensors -- stub for eventual completion
    :param Uij: numpy array [Uij]
    :param G: reciprocal metric tensor
    :returns: beta-ij - numpy array [beta-ij]
    """
    pass 
[docs]def cell2GS(cell):
    ''' returns Uij to betaij conversion matrix'''
    G, g = cell2Gmat(cell)
    GS = G
    GS[0][1] = GS[1][0] = math.sqrt(GS[0][0] * GS[1][1])
    GS[0][2] = GS[2][0] = math.sqrt(GS[0][0] * GS[2][2])
    GS[1][2] = GS[2][1] = math.sqrt(GS[1][1] * GS[2][2])
    return GS 
[docs]def Uij2Ueqv(Uij, GS, Amat):
    ''' returns 1/3 trace of diagonalized U matrix'''
    U = np.multiply(U6toUij(Uij), GS)
    U = np.inner(Amat, np.inner(U, Amat).T)
    E, R = nl.eigh(U)
    return np.sum(E) / 3. 
[docs]def CosAngle(U, V, G):
    """ calculate cos of angle between U & V in generalized coordinates
    defined by metric tensor G
    :param U: 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array
    :param V: 3-vectors assume numpy arrays, only as (3) vector
    :param G: metric tensor for U & V defined space assume numpy array
    :returns:
        cos(phi)
    """
    u = (U.T / np.sqrt(np.sum(np.inner(U, G) * U, axis=1))).T
    v = V / np.sqrt(np.inner(V, np.inner(G, V)))
    cosP = np.inner(u, np.inner(G, v))
    return cosP 
[docs]def CosSinAngle(U, V, G):
    """ calculate sin & cos of angle between U & V in generalized coordinates
    defined by metric tensor G
    :param U: 3-vectors assume numpy arrays
    :param V: 3-vectors assume numpy arrays
    :param G: metric tensor for U & V defined space assume numpy array
    :returns:
        cos(phi) & sin(phi)
    """
    u = U / np.sqrt(np.inner(U, np.inner(G, U)))
    v = V / np.sqrt(np.inner(V, np.inner(G, V)))
    cosP = np.inner(u, np.inner(G, v))
    sinP = np.sqrt(max(0.0, 1.0 - cosP**2))
    return cosP, sinP 
[docs]def criticalEllipse(prob):
    """
    Calculate critical values for probability ellipsoids from probability
    """
    if not (0.01 <= prob < 1.0):
        return 1.54
    coeff = np.array([
        6.44988E-09, 4.16479E-07, 1.11172E-05, 1.58767E-04, 0.00130554,
        0.00604091, 0.0114921, -0.040301, -0.6337203, 1.311582
    ])
    llpr = math.log(-math.log(prob))
    return np.polyval(coeff, llpr) 
[docs]def CellBlock(nCells):
    """
    Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1
    currently only works for nCells = 0 or 1 (not >1)
    """
    if nCells:
        N = 2 * nCells + 1
        N2 = N * N
        N3 = N * N * N
        cellArray = []
        A = np.array(range(N3))
        cellGen = np.array([A // N2 - 1, A // N % N - 1, A % N - 1]).T
        for cell in cellGen:
            cellArray.append(cell)
        return cellArray
    else:
        return [0, 0, 0] 
[docs]def CellAbsorption(ElList, Volume):
    '''Compute unit cell absorption
    :param dict ElList: dictionary of element contents including mu and
      number of atoms be cell
    :param float Volume: unit cell volume
    :returns: mu-total/Volume
    '''
    muT = 0
    for El in ElList:
        muT += ElList[El]['mu'] * ElList[El]['FormulaNo']
    return muT / Volume 
#Permutations and Combinations
# Four routines: combinations,uniqueCombinations, selections & permutations
#These taken from Python Cookbook, 2nd Edition. 19.15 p724-726
#
def _combinators(_handle, items, n):
    """ factored-out common structure of all following combinators """
    if n == 0:
        yield []
        return
    for i, item in enumerate(items):
        this_one = [item]
        for cc in _combinators(_handle, _handle(items, i), n - 1):
            yield this_one + cc
[docs]def combinations(items, n):
    """ take n distinct items, order matters """
    def skipIthItem(items, i):
        return items[:i] + items[i + 1:]
    return _combinators(skipIthItem, items, n) 
[docs]def uniqueCombinations(items, n):
    """ take n distinct items, order is irrelevant """
    def afterIthItem(items, i):
        return items[i + 1:]
    return _combinators(afterIthItem, items, n) 
[docs]def selections(items, n):
    """ take n (not necessarily distinct) items, order matters """
    def keepAllItems(items, i):
        return items
    return _combinators(keepAllItems, items, n) 
[docs]def permutations(items):
    """ take all items, order matters """
    return combinations(items, len(items)) 
#reflection generation routines
#for these: H = [h,k,l]; A is as used in calc_rDsq; G - inv metric tensor, g - metric tensor;
#           cell - a,b,c,alp,bet,gam in A & deg
[docs]def Pos2dsp(Inst, pos):
    ''' convert powder pattern position (2-theta or TOF, musec) to d-spacing
    '''
    if 'C' in Inst['Type'][0] or 'PKS' in Inst['Type'][0]:
        wave = G2mth.getWave(Inst)
        return wave / (2.0 * sind((pos - Inst.get('Zero', [0, 0])[1]) / 2.0))
    else:  #'T'OF - ignore difB
        return TOF2dsp(Inst, pos) 
[docs]def TOF2dsp(Inst, Pos):
    ''' convert powder pattern TOF, musec to d-spacing by successive approximation
    Pos can be numpy array
    '''
    def func(d, pos, Inst):
        return (pos - Inst['difA'][1] * d**2 - Inst['Zero'][1] -
                Inst['difB'][1] / d) / Inst['difC'][1]
    dsp0 = np.ones_like(Pos)
    N = 0
    while True:  #successive approximations
        dsp = func(dsp0, Pos, Inst)
        if np.allclose(dsp, dsp0, atol=0.000001):
            return dsp
        dsp0 = dsp
        N += 1
        if N > 10:
            return dsp 
[docs]def Dsp2pos(Inst, dsp):
    ''' convert d-spacing to powder pattern position (2-theta or TOF, musec)
    '''
    if 'C' in Inst['Type'][0] or 'PKS' in Inst['Type'][0]:
        wave = G2mth.getWave(Inst)
        val = min(0.995, wave / (2. * dsp))  #set max at 168deg
        pos = 2.0 * asind(val) + Inst.get('Zero', [0, 0])[1]
    else:  #'T'OF
        pos = Inst['difC'][1] * dsp + Inst['Zero'][1] + Inst['difA'][
            1] * dsp**2 + Inst.get('difB', [0, 0, False])[1] / dsp
    return pos 
[docs]def getPeakPos(dataType, parmdict, dsp):
    ''' convert d-spacing to powder pattern position (2-theta or TOF, musec)
    '''
    if 'C' in dataType:
        pos = 2.0 * asind(parmdict['Lam'] / (2. * dsp)) + parmdict['Zero']
    else:  #'T'OF
        pos = parmdict['difC'] * dsp + parmdict['difA'] * dsp**2 + parmdict[
            'difB'] / dsp + parmdict['Zero']
    return pos 
[docs]def calc_rDsq(H, A):
    'needs doc string'
    rdsq = H[0] * H[0] * A[0] + H[1] * H[1] * A[1] + H[2] * H[2] * A[2] + H[
        0] * H[1] * A[3] + H[0] * H[2] * A[4] + H[1] * H[2] * A[5]
    return rdsq 
[docs]def calc_rDsq2(H, G):
    'needs doc string'
    return np.inner(H, np.inner(G, H)) 
[docs]def calc_rDsqSS(H, A, vec):
    'needs doc string'
    rdsq = calc_rDsq(H[:3] + (H[3] * vec).T, A)
    return rdsq 
[docs]def calc_rDsqZ(H, A, Z, tth, lam):
    'needs doc string'
    rdsq = calc_rDsq(H, A) + Z * sind(tth) * 2.0 * rpd / lam**2
    return rdsq 
[docs]def calc_rDsqZSS(H, A, vec, Z, tth, lam):
    'needs doc string'
    rdsq = calc_rDsq(H[:3] + (H[3][:, np.newaxis] * vec).T,
                     A) + Z * sind(tth) * 2.0 * rpd / lam**2
    return rdsq 
[docs]def calc_rDsqT(H, A, Z, tof, difC):
    'needs doc string'
    rdsq = calc_rDsq(H, A) + Z / difC
    return rdsq 
[docs]def calc_rDsqTSS(H, A, vec, Z, tof, difC):
    'needs doc string'
    rdsq = calc_rDsq(H[:3] + (H[3][:, np.newaxis] * vec).T, A) + Z / difC
    return rdsq 
[docs]def PlaneIntercepts(Amat, H, phase, stack):
    ''' find unit cell intercepts for a stack of hkl planes
    '''
    Steps = range(-1, 2, 2)
    if stack:
        Steps = range(-10, 10, 1)
    Stack = []
    Ux = np.array([[0, 0], [1, 0], [1, 1], [0, 1]])
    for step in Steps:
        HX = []
        for i in [0, 1, 2]:
            if H[i]:
                h, k, l = [(i + 1) % 3, (i + 2) % 3, (i + 3) % 3]
                for j in [0, 1, 2, 3]:
                    hx = [0, 0, 0]
                    intcpt = ((phase) / 360. + step - H[h] * Ux[j, 0] -
                              H[k] * Ux[j, 1]) / H[l]
                    if 0. <= intcpt <= 1.:
                        hx[h] = Ux[j, 0]
                        hx[k] = Ux[j, 1]
                        hx[l] = intcpt
                        HX.append(hx)
        if len(HX) > 2:
            HX = np.array(HX)
            DX = np.inner(HX - HX[0], Amat)
            D = np.sqrt(np.sum(DX**2, axis=1))
            Dsort = np.argsort(D)
            HX = HX[Dsort]
            DX = DX[Dsort]
            D = D[Dsort]
            DX[1:, :] = DX[1:, :] / D[1:, nxs]
            A = 2. * np.ones(HX.shape[0])
            A[1:] = [np.dot(DX[1], dx) for dx in DX[1:]]
            HX = HX[np.argsort(A)]
            Stack.append(HX)
    return Stack 
[docs]def MaxIndex(dmin, A):
    'needs doc string'
    Hmax = [0, 0, 0]
    try:
        cell = A2cell(A)
    except:
        cell = [1., 1., 1., 90., 90., 90.]
    for i in range(3):
        Hmax[i] = int(round(cell[i] / dmin))
    return Hmax 
[docs]def transposeHKLF(transMat, Super, refList):
    ''' Apply transformation matrix to hkl(m)
    param: transmat: 3x3 or 4x4 array
    param: Super: 0 or 1 for extra index
    param: refList list of h,k,l,....
    return: newRefs transformed list of h',k',l',,,
    return: badRefs list of noninteger h',k',l'...
    '''
    newRefs = np.copy(refList)
    badRefs = []
    for H in newRefs:
        newH = np.inner(transMat, H[:3 + Super])
        H[:3 + Super] = np.rint(newH)
        if not np.allclose(newH, H[:3 + Super], atol=0.01):
            badRefs.append(newH)
    return newRefs, badRefs 
[docs]def sortHKLd(HKLd, ifreverse, ifdup, ifSS=False):
    '''sort reflection list on d-spacing; can sort in either order
    :param HKLd: a list of [h,k,l,d,...];
    :param ifreverse: True for largest d first
    :param ifdup: True if duplicate d-spacings allowed
    :return: sorted reflection list
    '''
    T = []
    N = 3
    if ifSS:
        N = 4
    for i, H in enumerate(HKLd):
        if ifdup:
            T.append((H[N], i))
        else:
            T.append(H[N])
    D = dict(zip(T, HKLd))
    T.sort()
    if ifreverse:
        T.reverse()
    X = []
    okey = ''
    for key in T:
        if key != okey:
            X.append(D[key])  #remove duplicate d-spacings
        okey = key
    return X 
[docs]def SwapIndx(Axis, H):
    'needs doc string'
    if Axis in [1, -1]:
        return H
    elif Axis in [2, -3]:
        return [H[1], H[2], H[0]]
    else:
        return [H[2], H[0], H[1]] 
[docs]def Rh2Hx(Rh):
    'needs doc string'
    Hx = [0, 0, 0]
    Hx[0] = Rh[0] - Rh[1]
    Hx[1] = Rh[1] - Rh[2]
    Hx[2] = np.sum(Rh)
    return Hx 
[docs]def Hx2Rh(Hx):
    'needs doc string'
    Rh = [0, 0, 0]
    itk = -Hx[0] + Hx[1] + Hx[2]
    if itk % 3 != 0:
        return 0  #error - not rhombohedral reflection
    else:
        Rh[1] = itk // 3
        Rh[0] = Rh[1] + Hx[0]
        Rh[2] = Rh[1] - Hx[1]
        if Rh[0] < 0:
            for i in range(3):
                Rh[i] = -Rh[i]
        return Rh 
[docs]def CentCheck(Cent, H):
    'needs doc string'
    h, k, l = H
    if Cent == 'A' and (k + l) % 2:
        return False
    elif Cent == 'B' and (h + l) % 2:
        return False
    elif Cent == 'C' and (h + k) % 2:
        return False
    elif Cent == 'I' and (h + k + l) % 2:
        return False
    elif Cent == 'F' and ((h + k) % 2 or (h + l) % 2 or (k + l) % 2):
        return False
    elif Cent == 'R' and (-h + k + l) % 3:
        return False
    else:
        return True 
[docs]def GetBraviasNum(center, system):
    """Determine the Bravais lattice number, as used in GenHBravais
    :param center: one of: 'P', 'C', 'I', 'F', 'R' (see SGLatt from GSASIIspc.SpcGroup)
    :param system: one of 'cubic', 'hexagonal', 'tetragonal', 'orthorhombic', 'trigonal' (for R)
      'monoclinic', 'triclinic' (see SGSys from GSASIIspc.SpcGroup)
    :return: a number between 0 and 13
      or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard)
    """
    if center.upper() == 'F' and system.lower() == 'cubic':
        return 0
    elif center.upper() == 'I' and system.lower() == 'cubic':
        return 1
    elif center.upper() == 'P' and system.lower() == 'cubic':
        return 2
    elif center.upper() == 'R' and system.lower() == 'trigonal':
        return 3
    elif center.upper() == 'P' and system.lower() == 'hexagonal':
        return 4
    elif center.upper() == 'I' and system.lower() == 'tetragonal':
        return 5
    elif center.upper() == 'P' and system.lower() == 'tetragonal':
        return 6
    elif center.upper() == 'F' and system.lower() == 'orthorhombic':
        return 7
    elif center.upper() == 'I' and system.lower() == 'orthorhombic':
        return 8
    elif center.upper() == 'A' and system.lower() == 'orthorhombic':
        return 9
    elif center.upper() == 'B' and system.lower() == 'orthorhombic':
        return 10
    elif center.upper() == 'C' and system.lower() == 'orthorhombic':
        return 11
    elif center.upper() == 'P' and system.lower() == 'orthorhombic':
        return 12
    elif center.upper() == 'C' and system.lower() == 'monoclinic':
        return 13
    elif center.upper() == 'P' and system.lower() == 'monoclinic':
        return 14
    elif center.upper() == 'P' and system.lower() == 'triclinic':
        return 15
    raise ValueError('non-standard Bravais lattice center=%s, cell=%s' %
                     (center, system)) 
[docs]def GenHBravais(dmin, Bravais, A):
    """Generate the positionally unique powder diffraction reflections
    :param dmin: minimum d-spacing in A
    :param Bravais: lattice type (see GetBraviasNum). Bravais is one of:
            * 0 F cubic
            * 1 I cubic
            * 2 P cubic
            * 3 R hexagonal (trigonal not rhombohedral)
            * 4 P hexagonal
            * 5 I tetragonal
            * 6 P tetragonal
            * 7 F orthorhombic
            * 8 I orthorhombic
            * 9 A orthorhombic
            * 10 B orthorhombic
            * 11 C orthorhombic
            * 12 P orthorhombic
            * 13 I monoclinic
            * 14 C monoclinic
            * 15 P monoclinic
            * 16 P triclinic
    :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
    :return: HKL unique d list of [h,k,l,d,-1] sorted with largest d first
    """
    if Bravais in [
            9,
    ]:
        Cent = 'A'
    elif Bravais in [
            10,
    ]:
        Cent = 'B'
    elif Bravais in [11, 14]:
        Cent = 'C'
    elif Bravais in [1, 5, 8, 13]:
        Cent = 'I'
    elif Bravais in [0, 7]:
        Cent = 'F'
    elif Bravais in [3]:
        Cent = 'R'
    else:
        Cent = 'P'
    Hmax = MaxIndex(dmin, A)
    dminsq = 1. / (dmin**2)
    HKL = []
    if Bravais == 16:  #triclinic
        for l in range(-Hmax[2], Hmax[2] + 1):
            for k in range(-Hmax[1], Hmax[1] + 1):
                hmin = 0
                if (k < 0):
                    hmin = 1
                if (k == 0 and l < 0):
                    hmin = 1
                for h in range(hmin, Hmax[0] + 1):
                    H = [h, k, l]
                    rdsq = calc_rDsq(H, A)
                    if 0 < rdsq <= dminsq:
                        HKL.append([h, k, l, rdsq2d(rdsq), -1])
    elif Bravais in [13, 14, 15]:  #monoclinic - b unique
        Hmax = SwapIndx(2, Hmax)
        for h in range(Hmax[0] + 1):
            for k in range(-Hmax[1], Hmax[1] + 1):
                lmin = 0
                if k < 0:
                    lmin = 1
                for l in range(lmin, Hmax[2] + 1):
                    [h, k, l] = SwapIndx(-2, [h, k, l])
                    H = []
                    if CentCheck(Cent, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq), -1])
                    [h, k, l] = SwapIndx(2, [h, k, l])
    elif Bravais in [7, 8, 9, 10, 11, 12]:  #orthorhombic
        for h in range(Hmax[0] + 1):
            for k in range(Hmax[1] + 1):
                for l in range(Hmax[2] + 1):
                    H = []
                    if CentCheck(Cent, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq), -1])
    elif Bravais in [5, 6]:  #tetragonal
        for l in range(Hmax[2] + 1):
            for k in range(Hmax[1] + 1):
                for h in range(k, Hmax[0] + 1):
                    H = []
                    if CentCheck(Cent, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq), -1])
    elif Bravais in [3, 4]:
        lmin = 0
        if Bravais == 3:
            lmin = -Hmax[2]  #hexagonal/trigonal
        for l in range(lmin, Hmax[2] + 1):
            for k in range(Hmax[1] + 1):
                hmin = k
                if l < 0:
                    hmin += 1
                for h in range(hmin, Hmax[0] + 1):
                    H = []
                    if CentCheck(Cent, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq), -1])
    else:  #cubic
        for l in range(Hmax[2] + 1):
            for k in range(l, Hmax[1] + 1):
                for h in range(k, Hmax[0] + 1):
                    H = []
                    if CentCheck(Cent, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq), -1])
    return sortHKLd(HKL, True, False) 
[docs]def getHKLmax(dmin, SGData, A):
    'finds maximum allowed hkl for given A within dmin'
    SGLaue = SGData['SGLaue']
    if SGLaue in ['3R', '3mR']:  #Rhombohedral axes
        Hmax = [0, 0, 0]
        cell = A2cell(A)
        aHx = cell[0] * math.sqrt(2.0 * (1.0 - cosd(cell[3])))
        cHx = cell[0] * math.sqrt(3.0 * (1.0 + 2.0 * cosd(cell[3])))
        Hmax[0] = Hmax[1] = int(round(aHx / dmin))
        Hmax[2] = int(round(cHx / dmin))
        #print Hmax,aHx,cHx
    else:  # all others
        Hmax = MaxIndex(dmin, A)
    return Hmax 
[docs]def GenHLaue(dmin, SGData, A):
    """Generate the crystallographically unique powder diffraction reflections
    for a lattice and Bravais type
    :param dmin: minimum d-spacing
    :param SGData: space group dictionary with at least
        * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m'
        * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F'
        * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string
    :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
    :return: HKL = list of [h,k,l,d] sorted with largest d first and is unique
            part of reciprocal space ignoring anomalous dispersion
    """
    import math
    SGLaue = SGData['SGLaue']
    SGLatt = SGData['SGLatt']
    SGUniq = SGData['SGUniq']
    #finds maximum allowed hkl for given A within dmin
    Hmax = getHKLmax(dmin, SGData, A)
    dminsq = 1. / (dmin**2)
    HKL = []
    if SGLaue == '-1':  #triclinic
        for l in range(-Hmax[2], Hmax[2] + 1):
            for k in range(-Hmax[1], Hmax[1] + 1):
                hmin = 0
                if (k < 0) or (k == 0 and l < 0):
                    hmin = 1
                for h in range(hmin, Hmax[0] + 1):
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq)])
    elif SGLaue == '2/m':  #monoclinic
        axisnum = 1 + ['a', 'b', 'c'].index(SGUniq)
        Hmax = SwapIndx(axisnum, Hmax)
        for h in range(Hmax[0] + 1):
            for k in range(-Hmax[1], Hmax[1] + 1):
                lmin = 0
                if k < 0:
                    lmin = 1
                for l in range(lmin, Hmax[2] + 1):
                    [h, k, l] = SwapIndx(-axisnum, [h, k, l])
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq)])
                    [h, k, l] = SwapIndx(axisnum, [h, k, l])
    elif SGLaue in ['mmm', '4/m', '6/m']:  #orthorhombic
        for l in range(Hmax[2] + 1):
            for h in range(Hmax[0] + 1):
                kmin = 1
                if SGLaue == 'mmm' or h == 0:
                    kmin = 0
                for k in range(kmin, Hmax[1] + 1):
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq)])
    elif SGLaue in ['4/mmm', '6/mmm']:  #tetragonal & hexagonal
        for l in range(Hmax[2] + 1):
            for h in range(Hmax[0] + 1):
                for k in range(h + 1):
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq)])
    elif SGLaue in ['3m1', '31m', '3', '3R', '3mR']:  #trigonals
        for l in range(-Hmax[2], Hmax[2] + 1):
            hmin = 0
            if l < 0:
                hmin = 1
            for h in range(hmin, Hmax[0] + 1):
                if SGLaue in ['3R', '3']:
                    kmax = h
                    kmin = -int((h - 1.) / 2.)
                else:
                    kmin = 0
                    kmax = h
                    if SGLaue in ['3m1', '3mR'] and l < 0:
                        kmax = h - 1
                    if SGLaue == '31m' and l < 0:
                        kmin = 1
                for k in range(kmin, kmax + 1):
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if SGLaue in ['3R', '3mR']:
                        H = Hx2Rh(H)
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([H[0], H[1], H[2], rdsq2d(rdsq)])
    else:  #cubic
        for h in range(Hmax[0] + 1):
            for k in range(h + 1):
                lmin = 0
                lmax = k
                if SGLaue == 'm3':
                    lmax = h - 1
                    if h == k:
                        lmax += 1
                for l in range(lmin, lmax + 1):
                    H = []
                    if CentCheck(SGLatt, [h, k, l]):
                        H = [h, k, l]
                    if H:
                        rdsq = calc_rDsq(H, A)
                        if 0 < rdsq <= dminsq:
                            HKL.append([h, k, l, rdsq2d(rdsq)])
    return sortHKLd(HKL, True, True) 
[docs]def GenPfHKLs(nMax, SGData, A):
    """Generate the unique pole figure reflections for a lattice and Bravais type.
    Min d-spacing=1.0A & no more than nMax returned
    :param nMax: maximum number of hkls returned
    :param SGData: space group dictionary with at least
        * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m'
        * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F'
        * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string
    :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]
    :return: HKL = list of 'h k l' strings sorted with largest d first; no duplicate zones
    """
    HKL = np.array(GenHLaue(1.0, SGData, A)).T[:3].T  #strip d-spacings
    N = min(nMax, len(HKL))
    return ['%d %d %d' % (h[0], h[1], h[2]) for h in HKL[:N]] 
[docs]def GenSSHLaue(dmin, SGData, SSGData, Vec, maxH, A):
    'needs a doc string'
    ifMag = False
    if 'MagSpGrp' in SGData:
        ifMag = True
    HKLs = []
    vec = np.array(Vec)
    vstar = np.sqrt(calc_rDsq(vec, A))  #find extra needed for -n SS reflections
    dvec = 1. / (maxH * vstar + 1. / dmin)
    HKL = GenHLaue(dvec, SGData, A)
    SSdH = [vec * h for h in range(-maxH, maxH + 1)]
    SSdH = dict(zip(range(-maxH, maxH + 1), SSdH))
    for h, k, l, d in HKL:
        ext = G2spc.GenHKLf([h, k, l],
                            SGData)[0]  #h,k,l must be integral values here
        if not ext and d >= dmin:
            HKLs.append([h, k, l, 0, d])
        for dH in SSdH:
            if dH:
                DH = SSdH[dH]
                H = [h + DH[0], k + DH[1], l + DH[2]]
                d = 1. / np.sqrt(calc_rDsq(H, A))
                if d >= dmin:
                    HKLM = np.array([h, k, l, dH])
                    if (G2spc.checkSSLaue([h, k, l, dH], SGData, SSGData) and
                            G2spc.checkSSextc(HKLM, SSGData)) or ifMag:
                        HKLs.append([h, k, l, dH, d])
    return HKLs 
[docs]def LaueUnique2(SGData, refList):
    ''' Impose Laue symmetry on hkl
    :param SGData: space group data from 'P '+Laue
    :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted
    :return: HKLF new reflection array with imposed Laue symmetry
    '''
    for ref in refList:
        H = ref[:3]
        Uniq = G2spc.GenHKLf(H, SGData)[2]
        Uniq = G2mth.sortArray(G2mth.sortArray(G2mth.sortArray(Uniq, 2), 1), 0)
        ref[:3] = Uniq[-1]
    return refList 
[docs]def LaueUnique(Laue, HKLF):
    ''' Impose Laue symmetry on hkl
    :param str Laue: Laue symbol, as below
      centrosymmetric Laue groups::
            ['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3',
            '-31m','-3m1','6/m','6/mmm','m3','m3m']
      noncentrosymmetric Laue groups::
           ['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm',
           '4','-4','422','4mm','3','312','321','31m','3m1','6','-6',
           '622','6mm','-62m','-6m2','23','432','-43m']
    :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted
    :returns: HKLF new reflection array with imposed Laue symmetry
    '''
    HKLFT = HKLF.T
    mat41 = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])  #hkl -> k,-h,l
    mat43 = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]])  #hkl -> -k,h,l
    mat4bar = np.array([[0, -1, 0], [1, 0, 0], [0, 0, -1]])  #hkl -> k,-h,-l
    mat31 = np.array([[-1, -1, 0], [1, 0, 0], [0, 0,
                                               1]])  #hkl -> ihl = -h-k,h,l
    mat32 = np.array([[0, 1, 0], [-1, -1, 0], [0, 0,
                                               1]])  #hkl -> kil = k,-h-k,l
    matd3 = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])  #hkl -> k,l,h
    matd3q = np.array([[0, 0, -1], [-1, 0, 0], [0, 1, 0]])  #hkl -> -l,-h,k
    matd3t = np.array([[0, 0, -1], [1, 0, 0], [0, -1, 0]])  #hkl -> -l,h,-k
    mat6 = np.array([[1, 1, 0], [-1, 0, 0], [0, 0,
                                             1]])  #hkl -> h+k,-h,l really 65
    matdm = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])  #hkl -> k,h,l
    matdmp = np.array([[-1, -1, 0], [0, 1, 0], [0, 0, 1]])  #hkl -> -h-k,k,l
    matkm = np.array([[-1, 0, 0], [1, 1, 0], [0, 0, 1]])  #hkl -> -h,h+k,l
    matd2 = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]])  #hkl -> k,h,-l
    matdm3 = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]])  #hkl -> h,l,k
    mat2d43 = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])  #hkl -> k,-h,l
    matk2 = np.array([[-1, 0, 0], [1, 1, 0], [0, 0, -1]])  #hkl -> -h,-i,-l
    #triclinic
    if Laue == '1':  #ok
        pass
    elif Laue == '-1':  #ok
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0),
                             HKLFT[:3] * np.array([-1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([-1, -1, -1])[:, nxs],
                             HKLFT[:3])
    #monoclinic
    #noncentrosymmetric - all ok
    elif Laue == '2':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([-1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '1 1 2':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0),
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '2 1 1':
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == 'm':
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
    elif Laue == 'm 1 1':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '1 1 m':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    #centrosymmetric - all ok
    elif Laue == '2/m 1 1':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[2] * HKLFT[0] == 0) & (HKLFT[1] < 0),
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '2/m':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] * HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '1 1 2/m':
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[1] * HKLFT[2] == 0) & (HKLFT[0] < 0),
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
    #orthorhombic
    #noncentrosymmetric - all OK
    elif Laue == '2 2 2':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == 'm m 2':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '2 m m':
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == 'm 2 m':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    #centrosymmetric - all ok
    elif Laue == 'm m m':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    #tetragonal
    #noncentrosymmetric - all ok
    elif Laue == '4':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] == 0) & (HKLFT[1] > 0),
            np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-4':
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '4 2 2':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] == 0,
                             np.squeeze(np.inner(HKLF[:, :3],
                                                 matdm[nxs, :, :])).T,
                             HKLFT[:3])  #in lieu od 2-fold
    elif Laue == '4 m m':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-4 2 m':
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '-4 m 2':
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[1] <= 0),
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0),
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[1] == 0),
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[0] > HKLFT[1]),
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    #centrosymmetric - all ok
    elif Laue == '4/m':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] == 0) & (HKLFT[1] > 0),
            np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '4/m m m':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
    #trigonal - all hex cell
    #noncentrosymmetric - all ok
    elif Laue == '3':
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '3 1 2':
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '3 2 1':
        HKLFT[:3] = np.where(
            HKLFT[0] <= -2 * HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < -2 * HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] > 0) & (HKLFT[1] == HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T
        HKLFT[:3] = np.where(
            (HKLFT[0] != 0) & (HKLFT[2] > 0) & (HKLFT[0] == -2 * HKLFT[1]),
            HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3])
    elif Laue == '3 1 m':
        HKLFT[:3] = np.where(
            HKLFT[0] >= HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            2 * HKLFT[1] < -HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] > -2 * HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matdmp[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T
    elif Laue == '3 m 1':
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[1] + HKLFT[0]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matkm[nxs, :, :])).T, HKLFT[:3])
    #centrosymmetric
    elif Laue == '-3':  #ok
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([-1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[0] < 0),
            -np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], -mat31[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-3 m 1':  #ok
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[1] + HKLFT[0]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matkm[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-3 1 m':  #ok
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([-1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], -mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    #hexagonal
    #noncentrosymmetric
    elif Laue == '6':  #ok
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-6':  #ok
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '6 2 2':  #ok
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[0] > HKLFT[1]),
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '6 m m':  #ok
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] > HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-6 m 2':  #ok
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '-6 2 m':  #ok
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] <= -2 * HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < -2 * HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] > 0) & (HKLFT[1] == HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T
        HKLFT[:3] = np.where(
            HKLFT[2] < 0,
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] > HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    #centrosymmetric
    elif Laue == '6/m':  #ok
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '6/m m m':  #ok
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] + HKLFT[1]) < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] > HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], matdm.T[nxs, :, :])).T, HKLFT[:3])
    #cubic - all ok
    #noncentrosymmetric -
    elif Laue == '2 3':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] < 0) & ((HKLFT[0] > -HKLFT[2]) | (HKLFT[1] > -HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3t[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] < 0) & ((HKLFT[0] > -HKLFT[2]) | (HKLFT[1] >= -HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3t[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([-1, 1, -1])[:, nxs],
                             HKLFT[:3])
    elif Laue == '4 3 2':
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, -1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < 0,
            np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] == 0,
                             np.squeeze(np.inner(HKLF[:, :3],
                                                 matdm[nxs, :, :])).T,
                             HKLFT[:3])  #in lieu od 2-fold
        HKLFT[:3] = np.where(
            (HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2]),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2]),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] == 0,
            np.squeeze(np.inner(HKLF[:, :3], mat2d43[nxs, :, :])).T, HKLFT[:3])
    elif Laue == '-4 3 m':
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[0] <= 0,
                             HKLFT[:3] * np.array([-1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] <= 0,
            np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[1] < HKLFT[0],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0),
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & (HKLFT[1] < HKLFT[0]),
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([-1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] < 0) & (HKLFT[2] < -HKLFT[0]) & (HKLFT[1] > HKLFT[2]),
            np.squeeze(np.inner(HKLF[:, :3], matd3q[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[0] < 0) & (HKLFT[2] >= -HKLFT[0]) & (HKLFT[1] > HKLFT[2]),
            np.squeeze(np.inner(HKLF[:, :3], matdm3[nxs, :, :])).T, HKLFT[:3])
    #centrosymmetric
    elif Laue == 'm 3':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
    elif Laue == 'm 3 m':
        HKLFT[:3] = np.where(HKLFT[0] < 0,
                             HKLFT[:3] * np.array([-1, 1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[1] < 0,
                             HKLFT[:3] * np.array([1, -1, 1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(HKLFT[2] < 0,
                             HKLFT[:3] * np.array([1, 1, -1])[:, nxs],
                             HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])),
            np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3])
        HKLFT[:3] = np.where(
            HKLFT[0] > HKLFT[1],
            np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3])
    return HKLFT.T 
#Spherical harmonics routines
[docs]def OdfChk(SGLaue, L, M):
    'needs doc string'
    if not L % 2 and abs(M) <= L:
        if SGLaue == '0':  #cylindrical symmetry
            if M == 0:
                return True
        elif SGLaue == '-1':
            return True
        elif SGLaue == '2/m':
            if not abs(M) % 2:
                return True
        elif SGLaue == 'mmm':
            if not abs(M) % 2 and M >= 0:
                return True
        elif SGLaue == '4/m':
            if not abs(M) % 4:
                return True
        elif SGLaue == '4/mmm':
            if not abs(M) % 4 and M >= 0:
                return True
        elif SGLaue in ['3R', '3']:
            if not abs(M) % 3:
                return True
        elif SGLaue in ['3mR', '3m1', '31m']:
            if not abs(M) % 3 and M >= 0:
                return True
        elif SGLaue == '6/m':
            if not abs(M) % 6:
                return True
        elif SGLaue == '6/mmm':
            if not abs(M) % 6 and M >= 0:
                return True
        elif SGLaue == 'm3':
            if M > 0:
                if L % 12 == 2:
                    if M <= L // 12:
                        return True
                else:
                    if M <= L // 12 + 1:
                        return True
        elif SGLaue == 'm3m':
            if M > 0:
                if L % 12 == 2:
                    if M <= L // 12:
                        return True
                else:
                    if M <= L // 12 + 1:
                        return True
    return False 
[docs]def GenSHCoeff(SGLaue, SamSym, L, IfLMN=True):
    'needs doc string'
    coeffNames = []
    for iord in [2 * i + 2 for i in range(L // 2)]:
        for m in [i - iord for i in range(2 * iord + 1)]:
            if OdfChk(SamSym, iord, m):
                for n in [i - iord for i in range(2 * iord + 1)]:
                    if OdfChk(SGLaue, iord, n):
                        if IfLMN:
                            coeffNames.append('C(%d,%d,%d)' % (iord, m, n))
                        else:
                            coeffNames.append('C(%d,%d)' % (iord, n))
    return coeffNames 
[docs]def CrsAng(H, cell, SGData):
    'needs doc string'
    a, b, c, al, be, ga = cell
    SQ3 = 1.732050807569
    H1 = np.array([1, 0, 0])
    H2 = np.array([0, 1, 0])
    H3 = np.array([0, 0, 1])
    H4 = np.array([1, 1, 1])
    G, g = cell2Gmat(cell)
    Laue = SGData['SGLaue']
    Naxis = SGData['SGUniq']
    if len(H.shape) == 1:
        DH = np.inner(H, np.inner(G, H))
    else:
        DH = np.array([np.inner(h, np.inner(G, h)) for h in H])
    if Laue == '2/m':
        if Naxis == 'a':
            DR = np.inner(H1, np.inner(G, H1))
            DHR = np.inner(H, np.inner(G, H1))
        elif Naxis == 'b':
            DR = np.inner(H2, np.inner(G, H2))
            DHR = np.inner(H, np.inner(G, H2))
        else:
            DR = np.inner(H3, np.inner(G, H3))
            DHR = np.inner(H, np.inner(G, H3))
    elif Laue in ['R3', 'R3m']:
        DR = np.inner(H4, np.inner(G, H4))
        DHR = np.inner(H, np.inner(G, H4))
    else:
        DR = np.inner(H3, np.inner(G, H3))
        DHR = np.inner(H, np.inner(G, H3))
    DHR /= np.sqrt(DR * DH)
    phi = np.where(DHR <= 1.0, acosd(DHR), 0.0)
    if Laue == '-1':
        BA = H.T[1] * a / (b - H.T[0] * cosd(ga))
        BB = H.T[0] * sind(ga)**2
    elif Laue == '2/m':
        if Naxis == 'a':
            BA = H.T[2] * b / (c - H.T[1] * cosd(al))
            BB = H.T[1] * sind(al)**2
        elif Naxis == 'b':
            BA = H.T[0] * c / (a - H.T[2] * cosd(be))
            BB = H.T[2] * sind(be)**2
        else:
            BA = H.T[1] * a / (b - H.T[0] * cosd(ga))
            BB = H.T[0] * sind(ga)**2
    elif Laue in ['mmm', '4/m', '4/mmm']:
        BA = H.T[1] * a
        BB = H.T[0] * b
    elif Laue in ['3R', '3mR']:
        BA = H.T[0] + H.T[1] - 2.0 * H.T[2]
        BB = SQ3 * (H.T[0] - H.T[1])
    elif Laue in ['m3', 'm3m']:
        BA = H.T[1]
        BB = H.T[0]
    else:
        BA = H.T[0] + 2.0 * H.T[1]
        BB = SQ3 * H.T[0]
    beta = atan2d(BA, BB)
    return phi, beta 
[docs]def SamAng(Tth, Gangls, Sangl, IFCoup):
    """Compute sample orientation angles vs laboratory coord. system
    :param Tth:        Signed theta
    :param Gangls:     Sample goniometer angles phi,chi,omega,azmuth
    :param Sangl:      Sample angle zeros om-0, chi-0, phi-0
    :param IFCoup:     True if omega & 2-theta coupled in CW scan
    :returns:
        psi,gam:    Sample odf angles
        dPSdA,dGMdA:    Angle zero derivatives
    """
    if IFCoup:
        GSomeg = sind(Gangls[2] + Tth)
        GComeg = cosd(Gangls[2] + Tth)
    else:
        GSomeg = sind(Gangls[2])
        GComeg = cosd(Gangls[2])
    GSTth = sind(Tth)
    GCTth = cosd(Tth)
    GSazm = sind(Gangls[3])
    GCazm = cosd(Gangls[3])
    GSchi = sind(Gangls[1])
    GCchi = cosd(Gangls[1])
    GSphi = sind(Gangls[0] + Sangl[2])
    GCphi = cosd(Gangls[0] + Sangl[2])
    SSomeg = sind(Sangl[0])
    SComeg = cosd(Sangl[0])
    SSchi = sind(Sangl[1])
    SCchi = cosd(Sangl[1])
    AT = -GSTth * GComeg + GCTth * GCazm * GSomeg
    BT = GSTth * GSomeg + GCTth * GCazm * GComeg
    CT = -GCTth * GSazm * GSchi
    DT = -GCTth * GSazm * GCchi
    BC1 = -AT * GSphi + (CT + BT * GCchi) * GCphi
    BC2 = DT - BT * GSchi
    BC3 = AT * GCphi + (CT + BT * GCchi) * GSphi
    BC = BC1 * SComeg * SCchi + BC2 * SComeg * SSchi - BC3 * SSomeg
    psi = acosd(BC)
    BD = 1.0 - BC**2
    C = np.where(BD > 1.e-6, rpd / np.sqrt(BD), 0.)
    dPSdA = [
        -C * (-BC1 * SSomeg * SCchi - BC2 * SSomeg * SSchi - BC3 * SComeg),
        -C * (-BC1 * SComeg * SSchi + BC2 * SComeg * SCchi),
        -C * (-BC1 * SSomeg - BC3 * SComeg * SCchi)
    ]
    BA = -BC1 * SSchi + BC2 * SCchi
    BB = BC1 * SSomeg * SCchi + BC2 * SSomeg * SSchi + BC3 * SComeg
    gam = atan2d(BB, BA)
    BD = (BA**2 + BB**2) / rpd
    dBAdO = 0
    dBAdC = -BC1 * SCchi - BC2 * SSchi
    dBAdF = BC3 * SSchi
    dBBdO = BC1 * SComeg * SCchi + BC2 * SComeg * SSchi - BC3 * SSomeg
    dBBdC = -BC1 * SSomeg * SSchi + BC2 * SSomeg * SCchi
    dBBdF = BC1 * SComeg - BC3 * SSomeg * SCchi
    dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \
        
(BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)])
    return psi, gam, dPSdA, dGMdA 
BOH = {
    'L=2': [[], [], []],
    'L=4': [[0.30469720, 0.36418281], [], []],
    'L=6': [[-0.14104740, 0.52775103], [], []],
    'L=8': [[0.28646862, 0.21545346, 0.32826995], [], []],
    'L=10': [[-0.16413497, 0.33078546, 0.39371345], [], []],
    'L=12': [[0.26141975, 0.27266871, 0.03277460, 0.32589402],
             [0.09298802, -0.23773812, 0.49446631, 0.0], []],
    'L=14': [[-0.17557309, 0.25821932, 0.27709173, 0.33645360], [], []],
    'L=16': [[0.24370673, 0.29873515, 0.06447688, 0.00377, 0.32574495],
             [0.12039646, -0.25330128, 0.23950998, 0.40962508, 0.0], []],
    'L=18': [[-0.16914245, 0.17017340, 0.34598142, 0.07433932, 0.32696037],
             [-0.06901768, 0.16006562, -0.24743528, 0.47110273, 0.0], []],
    'L=20': [[
        0.23067026, 0.31151832, 0.09287682, 0.01089683, 0.00037564, 0.32573563
    ], [0.13615420, -0.25048007, 0.12882081, 0.28642879, 0.34620433, 0.0], []],
    'L=22': [[
        -0.16109560, 0.10244188, 0.36285175, 0.13377513, 0.01314399, 0.32585583
    ], [-0.09620055, 0.20244115, -0.22389483, 0.17928946, 0.42017231, 0.0], []],
    'L=24': [[
        0.22050742, 0.31770654, 0.11661736, 0.02049853, 0.00150861, 0.00003426,
        0.32573505
    ],
             [
                 0.13651722, -0.21386648, 0.00522051, 0.33939435, 0.10837396,
                 0.32914497, 0.0
             ],
             [
                 0.05378596, -0.11945819, 0.16272298, -0.26449730, 0.44923956,
                 0.0, 0.0
             ]],
    'L=26': [[
        -0.15435003, 0.05261630, 0.35524646, 0.18578869, 0.03259103, 0.00186197,
        0.32574594
    ],
             [
                 -0.11306511, 0.22072681, -0.18706142, 0.05439948, 0.28122966,
                 0.35634355, 0.0
             ], []],
    'L=28': [[
        0.21225019, 0.32031716, 0.13604702, 0.03132468, 0.00362703, 0.00018294,
        0.00000294, 0.32573501
    ],
             [
                 0.13219496, -0.17206256, -0.08742608, 0.32671661, 0.17973107,
                 0.02567515, 0.32619598, 0.0
             ],
             [
                 0.07989184, -0.16735346, 0.18839770, -0.20705337, 0.12926808,
                 0.42715602, 0.0, 0.0
             ]],
    'L=30': [[
        -0.14878368, 0.01524973, 0.33628434, 0.22632587, 0.05790047, 0.00609812,
        0.00022898, 0.32573594
    ],
             [
                 -0.11721726, 0.20915005, -0.11723436, -0.07815329, 0.31318947,
                 0.13655742, 0.33241385, 0.0
             ],
             [
                 -0.04297703, 0.09317876, -0.11831248, 0.17355132, -0.28164031,
                 0.42719361, 0.0, 0.0
             ]],
    'L=32': [[
        0.20533892, 0.32087437, 0.15187897, 0.04249238, 0.00670516, 0.00054977,
        0.00002018, 0.00000024, 0.32573501
    ],
             [
                 0.12775091, -0.13523423, -0.14935701, 0.28227378, 0.23670434,
                 0.05661270, 0.00469819, 0.32578978, 0.0
             ],
             [
                 0.09703829, -0.19373733, 0.18610682, -0.14407046, 0.00220535,
                 0.26897090, 0.36633402, 0.0, 0.0
             ]],
    'L=34': [[
        -0.14409234, -0.01343681, 0.31248977, 0.25557722, 0.08571889,
        0.01351208, 0.00095792, 0.00002550, 0.32573508
    ],
             [
                 -0.11527834, 0.18472133, -0.04403280, -0.16908618, 0.27227021,
                 0.21086614, 0.04041752, 0.32688152, 0.0
             ],
             [
                 -0.06773139, 0.14120811, -0.15835721, 0.18357456, -0.19364673,
                 0.08377174, 0.43116318, 0.0, 0.0
             ]]
}
Lnorm = lambda L: 4. * np.pi / (2.0 * L + 1.)
[docs]def GetKcl(L, N, SGLaue, phi, beta):
    'needs doc string'
    import pytexture as ptx
    if SGLaue in ['m3', 'm3m']:
        if 'array' in str(type(phi)) and np.any(phi.shape):
            Kcl = np.zeros_like(phi)
        else:
            Kcl = 0.
        for j in range(0, L + 1, 4):
            im = j // 4
            if 'array' in str(type(phi)) and np.any(phi.shape):
                pcrs = ptx.pyplmpsi(L, j, len(phi), phi)[0]
            else:
                pcrs = ptx.pyplmpsi(L, j, 1, phi)[0]
            Kcl += BOH['L=%d' % (L)][N - 1][im] * pcrs * cosd(j * beta)
    else:
        if 'array' in str(type(phi)) and np.any(phi.shape):
            pcrs = ptx.pyplmpsi(L, N, len(phi), phi)[0]
        else:
            pcrs = ptx.pyplmpsi(L, N, 1, phi)[0]
        pcrs *= RSQ2PI
        if N:
            pcrs *= SQ2
        if SGLaue in ['mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m']:
            if SGLaue in ['3mR', '3m1', '31m']:
                if N % 6 == 3:
                    Kcl = pcrs * sind(N * beta)
                else:
                    Kcl = pcrs * cosd(N * beta)
            else:
                Kcl = pcrs * cosd(N * beta)
        else:
            Kcl = pcrs * (cosd(N * beta) + sind(N * beta))
    return Kcl 
[docs]def GetKsl(L, M, SamSym, psi, gam):
    'needs doc string'
    import pytexture as ptx
    if 'array' in str(type(psi)) and np.any(psi.shape):
        psrs, dpdps = ptx.pyplmpsi(L, M, len(psi), psi)
    else:
        psrs, dpdps = ptx.pyplmpsi(L, M, 1, psi)
    psrs *= RSQ2PI
    dpdps *= RSQ2PI
    if M:
        psrs *= SQ2
        dpdps *= SQ2
    if SamSym in [
            'mmm',
    ]:
        dum = cosd(M * gam)
        Ksl = psrs * dum
        dKsdp = dpdps * dum
        dKsdg = -psrs * M * sind(M * gam)
    else:
        dum = cosd(M * gam) + sind(M * gam)
        Ksl = psrs * dum
        dKsdp = dpdps * dum
        dKsdg = psrs * M * (-sind(M * gam) + cosd(M * gam))
    return Ksl, dKsdp, dKsdg 
[docs]def GetKclKsl(L, N, SGLaue, psi, phi, beta):
    """
    This is used for spherical harmonics description of preferred orientation;
        cylindrical symmetry only (M=0) and no sample angle derivatives returned
    """
    import pytexture as ptx
    Ksl, x = ptx.pyplmpsi(L, 0, 1, psi)
    Ksl *= RSQ2PI
    if SGLaue in ['m3', 'm3m']:
        Kcl = 0.0
        for j in range(0, L + 1, 4):
            im = j // 4
            pcrs, dum = ptx.pyplmpsi(L, j, 1, phi)
            Kcl += BOH['L=%d' % (L)][N - 1][im] * pcrs * cosd(j * beta)
    else:
        pcrs, dum = ptx.pyplmpsi(L, N, 1, phi)
        pcrs *= RSQ2PI
        if N:
            pcrs *= SQ2
        if SGLaue in ['mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m']:
            if SGLaue in ['3mR', '3m1', '31m']:
                if N % 6 == 3:
                    Kcl = pcrs * sind(N * beta)
                else:
                    Kcl = pcrs * cosd(N * beta)
            else:
                Kcl = pcrs * cosd(N * beta)
        else:
            Kcl = pcrs * (cosd(N * beta) + sind(N * beta))
    return Kcl * Ksl, Lnorm(L) 
[docs]def Glnh(Start, SHCoef, psi, gam, SamSym):
    'needs doc string'
    import pytexture as ptx
    if Start:
        ptx.pyqlmninit()
        Start = False
    Fln = np.zeros(len(SHCoef))
    for i, term in enumerate(SHCoef):
        l, m, n = eval(term.strip('C'))
        pcrs, dum = ptx.pyplmpsi(l, m, 1, psi)
        pcrs *= RSQPI
        if m == 0:
            pcrs /= SQ2
        if SamSym in [
                'mmm',
        ]:
            Ksl = pcrs * cosd(m * gam)
        else:
            Ksl = pcrs * (cosd(m * gam) + sind(m * gam))
        Fln[i] = SHCoef[term] * Ksl * Lnorm(l)
    ODFln = dict(zip(SHCoef.keys(), list(zip(SHCoef.values(), Fln))))
    return ODFln 
[docs]def Flnh(Start, SHCoef, phi, beta, SGData):
    'needs doc string'
    import pytexture as ptx
    if Start:
        ptx.pyqlmninit()
        Start = False
    Fln = np.zeros(len(SHCoef))
    for i, term in enumerate(SHCoef):
        l, m, n = eval(term.strip('C'))
        if SGData['SGLaue'] in ['m3', 'm3m']:
            Kcl = 0.0
            for j in range(0, l + 1, 4):
                im = j // 4
                pcrs, dum = ptx.pyplmpsi(l, j, 1, phi)
                Kcl += BOH['L=' + str(l)][n - 1][im] * pcrs * cosd(j * beta)
        else:  #all but cubic
            pcrs, dum = ptx.pyplmpsi(l, n, 1, phi)
            pcrs *= RSQPI
            if n == 0:
                pcrs /= SQ2
            if SGData['SGLaue'] in [
                    'mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m'
            ]:
                if SGData['SGLaue'] in ['3mR', '3m1', '31m']:
                    if n % 6 == 3:
                        Kcl = pcrs * sind(n * beta)
                    else:
                        Kcl = pcrs * cosd(n * beta)
                else:
                    Kcl = pcrs * cosd(n * beta)
            else:
                Kcl = pcrs * (cosd(n * beta) + sind(n * beta))
        Fln[i] = SHCoef[term] * Kcl * Lnorm(l)
    ODFln = dict(zip(SHCoef.keys(), list(zip(SHCoef.values(), Fln))))
    return ODFln 
[docs]def polfcal(ODFln, SamSym, psi, gam):
    '''Perform a pole figure computation.
    Note that the the number of gam values must either be 1 or must
    match psi. Updated for numpy 1.8.0
    '''
    import pytexture as ptx
    PolVal = np.ones_like(psi)
    for term in ODFln:
        if abs(ODFln[term][1]) > 1.e-3:
            l, m, n = eval(term.strip('C'))
            psrs, dum = ptx.pyplmpsi(l, m, len(psi), psi)
            if SamSym in ['-1', '2/m']:
                if m:
                    Ksl = RSQPI * psrs * (cosd(m * gam) + sind(m * gam))
                else:
                    Ksl = RSQPI * psrs / SQ2
            else:
                if m:
                    Ksl = RSQPI * psrs * cosd(m * gam)
                else:
                    Ksl = RSQPI * psrs / SQ2
            PolVal += ODFln[term][1] * Ksl
    return PolVal 
[docs]def invpolfcal(ODFln, SGData, phi, beta):
    'needs doc string'
    import pytexture as ptx
    invPolVal = np.ones_like(beta)
    for term in ODFln:
        if abs(ODFln[term][1]) > 1.e-3:
            l, m, n = eval(term.strip('C'))
            if SGData['SGLaue'] in ['m3', 'm3m']:
                Kcl = 0.0
                for j in range(0, l + 1, 4):
                    im = j // 4
                    pcrs, dum = ptx.pyplmpsi(l, j, len(beta), phi)
                    Kcl += BOH['L=%d' % (l)][n - 1][im] * pcrs * cosd(j * beta)
            else:  #all but cubic
                pcrs, dum = ptx.pyplmpsi(l, n, len(beta), phi)
                pcrs *= RSQPI
                if n == 0:
                    pcrs /= SQ2
                if SGData['SGLaue'] in [
                        'mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m'
                ]:
                    if SGData['SGLaue'] in ['3mR', '3m1', '31m']:
                        if n % 6 == 3:
                            Kcl = pcrs * sind(n * beta)
                        else:
                            Kcl = pcrs * cosd(n * beta)
                    else:
                        Kcl = pcrs * cosd(n * beta)
                else:
                    Kcl = pcrs * (cosd(n * beta) + sind(n * beta))
            invPolVal += ODFln[term][1] * Kcl
    return invPolVal 
[docs]def textureIndex(SHCoef):
    'needs doc string'
    Tindx = 1.0
    for term in SHCoef:
        l = eval(term.strip('C'))[0]
        Tindx += SHCoef[term]**2 / (2.0 * l + 1.)
    return Tindx 
# self-test materials follow.
selftestlist = []
'''Defines a list of self-tests'''
selftestquiet = True
def _ReportTest():
    'Report name and doc string of current routine when ``selftestquiet`` is False'
    if not selftestquiet:
        import inspect
        caller = inspect.stack()[1][3]
        doc = eval(caller).__doc__
        if doc is not None:
            print('testing ' + __file__ + ' with ' + caller + ' (' + doc + ')')
        else:
            print('testing ' + __file__() + " with " + caller)
NeedTestData = True
[docs]def TestData():
    array = np.array
    global NeedTestData
    NeedTestData = False
    global CellTestData
    # output from uctbx computed on platform darwin on 2010-05-28
    CellTestData = [
        # cell, g, G, cell*, V, V*
        [(4, 4, 4, 90, 90, 90),
         array([[1.60000000e+01, 9.79717439e-16, 9.79717439e-16],
                [9.79717439e-16, 1.60000000e+01, 9.79717439e-16],
                [9.79717439e-16, 9.79717439e-16, 1.60000000e+01]]),
         array([[6.25000000e-02, 3.82702125e-18, 3.82702125e-18],
                [3.82702125e-18, 6.25000000e-02, 3.82702125e-18],
                [3.82702125e-18, 3.82702125e-18, 6.25000000e-02]]),
         (0.25, 0.25, 0.25, 90.0, 90.0, 90.0), 64.0, 0.015625],
        # cell, g, G, cell*, V, V*
        [(4.0999999999999996, 5.2000000000000002, 6.2999999999999998, 100, 80,
          130),
         array([[16.81, -13.70423184, 4.48533243],
                [-13.70423184, 27.04, -5.6887143],
                [4.48533243, -5.6887143, 39.69]]),
         array([[0.10206349, 0.05083339, -0.00424823],
                [0.05083339, 0.06344997, 0.00334956],
                [-0.00424823, 0.00334956, 0.02615544]]),
         (0.31947376387537696, 0.25189277536327803, 0.16172643497798223,
          85.283666420376008, 94.716333579624006, 50.825714168082683),
         100.98576357983838, 0.0099023858863968445],
        # cell, g, G, cell*, V, V*
        [(3.5, 3.5, 6, 90, 90, 120),
         array([[1.22500000e+01, -6.12500000e+00, 1.28587914e-15],
                [-6.12500000e+00, 1.22500000e+01, 1.28587914e-15],
                [1.28587914e-15, 1.28587914e-15, 3.60000000e+01]]),
         array([[1.08843537e-01, 5.44217687e-02, 3.36690552e-18],
                [5.44217687e-02, 1.08843537e-01, 3.36690552e-18],
                [3.36690552e-18, 3.36690552e-18, 2.77777778e-02]]),
         (0.32991443953692895, 0.32991443953692895, 0.16666666666666669, 90.0,
          90.0, 60.000000000000021), 63.652867178156257, 0.015710211406520427],
    ]
    global CoordTestData
    CoordTestData = [
        # cell, ((frac, ortho),...)
        ((
            4,
            4,
            4,
            90,
            90,
            90,
        ), [
            ((0.10000000000000001, 0.0, 0.0), (0.40000000000000002, 0.0, 0.0)),
            ((0.0, 0.10000000000000001, 0.0), (2.4492935982947065e-17,
                                               0.40000000000000002, 0.0)),
            ((0.0, 0.0, 0.10000000000000001),
             (2.4492935982947065e-17, -2.4492935982947065e-17,
              0.40000000000000002)),
            ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),
             (0.40000000000000013, 0.79999999999999993, 1.2)),
            ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),
             (0.80000000000000016, 1.2, 0.40000000000000002)),
            ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),
             (1.2, 0.80000000000000004, 0.40000000000000002)),
            ((0.5, 0.5, 0.5), (2.0, 1.9999999999999998, 2.0)),
        ]),
        # cell, ((frac, ortho),...)
        ((
            4.1,
            5.2,
            6.3,
            100,
            80,
            130,
        ), [
            ((0.10000000000000001, 0.0, 0.0), (0.40999999999999998, 0.0, 0.0)),
            ((0.0, 0.10000000000000001, 0.0), (-0.33424955703700043,
                                               0.39834311042186865, 0.0)),
            ((0.0, 0.0, 0.10000000000000001),
             (0.10939835193016617, -0.051013289294572106, 0.6183281045774256)),
            ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),
             (0.069695941716497567, 0.64364635296002093, 1.8549843137322766)),
            ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),
             (-0.073350319180835066, 1.1440160419710339, 0.6183281045774256)),
            ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),
             (0.67089923785616512, 0.74567293154916525, 0.6183281045774256)),
            ((0.5, 0.5, 0.5), (0.92574397446582857, 1.7366491056364828,
                               3.0916405228871278)),
        ]),
        # cell, ((frac, ortho),...)
        ((
            3.5,
            3.5,
            6,
            90,
            90,
            120,
        ), [
            ((0.10000000000000001, 0.0, 0.0), (0.35000000000000003, 0.0, 0.0)),
            ((0.0, 0.10000000000000001, 0.0), (-0.17499999999999993,
                                               0.3031088913245536, 0.0)),
            ((0.0, 0.0, 0.10000000000000001),
             (3.6739403974420595e-17, -3.6739403974420595e-17,
              0.60000000000000009)),
            ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),
             (2.7675166561703527e-16, 0.60621778264910708, 1.7999999999999998)),
            ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),
             (0.17500000000000041, 0.90932667397366063, 0.60000000000000009)),
            ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),
             (0.70000000000000018, 0.6062177826491072, 0.60000000000000009)),
            ((0.5, 0.5, 0.5), (0.87500000000000067, 1.5155444566227676, 3.0)),
        ]),
    ]
    global LaueTestData  #generated by GSAS
    LaueTestData = {
        'R 3 m': [(4., 4., 6., 90., 90., 120.),
                  ((1, 0, 1, 6), (1, 0, -2, 6), (0, 0, 3, 2), (1, 1, 0, 6),
                   (2, 0, -1, 6), (2, 0, 2, 6), (1, 1, 3, 12), (1, 0, 4, 6),
                   (2, 1, 1, 12), (2, 1, -2, 12), (3, 0, 0, 6), (1, 0, -5, 6),
                   (2, 0, -4, 6), (3, 0, -3, 6), (3, 0, 3, 6), (0, 0, 6, 2),
                   (2, 2, 0, 6), (2, 1, 4, 12), (2, 0, 5, 6), (3, 1, -1, 12),
                   (3, 1, 2, 12), (1, 1, 6, 12), (2, 2, 3, 12), (2, 1, -5, 12))
                 ],
        'R 3': [(4., 4., 6., 90., 90., 120.),
                ((1, 0, 1, 6), (1, 0, -2, 6), (0, 0, 3, 2), (1, 1, 0, 6),
                 (2, 0, -1, 6), (2, 0, 2, 6), (1, 1, 3, 6), (1, 1, -3, 6),
                 (1, 0, 4, 6), (3, -1, 1, 6), (2, 1, 1, 6), (3, -1, -2, 6),
                 (2, 1, -2, 6), (3, 0, 0, 6), (1, 0, -5, 6), (2, 0, -4, 6),
                 (2, 2, 0, 6), (3, 0, 3, 6), (3, 0, -3, 6), (0, 0, 6, 2),
                 (3, -1, 4, 6), (2, 0, 5, 6), (2, 1, 4, 6), (4, -1, -1, 6),
                 (3, 1, -1, 6), (3, 1, 2, 6), (4, -1, 2, 6), (2, 2, -3,
                                                              6), (1, 1, -6, 6),
                 (1, 1, 6, 6), (2, 2, 3, 6), (2, 1, -5, 6), (3, -1, -5, 6))],
        'P 3': [
            (4., 4., 6., 90., 90., 120.),
            ((0, 0, 1, 2), (1, 0, 0, 6), (1, 0, 1, 6), (0, 0, 2, 2),
             (1, 0, -1, 6), (1, 0, 2, 6), (1, 0, -2, 6), (1, 1, 0, 6),
             (0, 0, 3, 2), (1, 1, 1, 6), (1, 1, -1, 6), (1, 0, 3, 6),
             (1, 0, -3, 6), (2, 0, 0, 6), (2, 0, -1, 6), (1, 1, -2, 6),
             (1, 1, 2, 6), (2, 0, 1, 6), (2, 0, -2, 6), (2, 0, 2, 6),
             (0, 0, 4, 2), (1, 1, -3, 6), (1, 1, 3, 6), (1, 0, -4, 6),
             (1, 0, 4, 6), (2, 0, -3, 6), (2, 1, 0, 6), (2, 0, 3, 6),
             (3, -1, 0, 6), (2, 1, 1, 6), (3, -1, -1, 6), (2, 1, -1, 6),
             (3, -1, 1, 6), (1, 1, 4, 6), (3, -1, 2, 6), (3, -1, -2, 6),
             (1, 1, -4, 6), (0, 0, 5, 2), (2, 1, 2, 6), (2, 1, -2, 6),
             (3, 0, 0, 6), (3, 0, 1, 6), (2, 0, 4, 6), (2, 0, -4, 6),
             (3, 0, -1, 6), (1, 0, -5, 6), (1, 0, 5,
                                            6), (3, -1, -3, 6), (2, 1, -3, 6),
             (2, 1, 3, 6), (3, -1, 3, 6), (3, 0, -2, 6), (3, 0, 2, 6), (1, 1, 5,
                                                                        6),
             (1, 1, -5, 6), (2, 2, 0, 6), (3, 0, 3, 6), (3, 0, -3, 6), (0, 0, 6,
                                                                        2),
             (2, 0, -5, 6), (2, 1, -4, 6), (2, 2, -1,
                                            6), (3, -1, -4, 6), (2, 2, 1, 6),
             (3, -1, 4, 6), (2, 1, 4, 6), (2, 0, 5, 6), (1, 0, -6,
                                                         6), (1, 0, 6,
                                                              6), (4, -1, 0, 6),
             (3, 1, 0, 6), (3, 1, -1, 6), (3, 1, 1, 6), (4, -1, -1,
                                                         6), (2, 2, 2,
                                                              6), (4, -1, 1, 6),
             (2, 2, -2, 6), (3, 1, 2, 6), (3, 1, -2, 6), (3, 0, 4, 6), (3, 0,
                                                                        -4, 6),
             (4, -1, -2, 6), (4, -1, 2, 6), (2, 2, -3, 6), (1, 1, 6,
                                                            6), (1, 1, -6, 6),
             (2, 2, 3, 6), (3, -1, 5, 6), (2, 1, 5, 6), (2, 1, -5, 6), (3, -1,
                                                                        -5, 6))
        ],
        'P 3 m 1': [
            (4., 4., 6., 90., 90., 120.),
            ((0, 0, 1, 2), (1, 0, 0, 6), (1, 0, -1, 6), (1, 0, 1, 6),
             (0, 0, 2, 2), (1, 0, -2, 6), (1, 0, 2, 6), (1, 1, 0, 6),
             (0, 0, 3, 2), (1, 1, 1, 12), (1, 0, -3, 6), (1, 0, 3, 6),
             (2, 0, 0, 6), (1, 1, 2, 12), (2, 0, 1, 6), (2, 0, -1, 6),
             (0, 0, 4, 2), (2, 0, -2, 6), (2, 0, 2, 6), (1, 1, 3, 12),
             (1, 0, -4, 6), (1, 0, 4, 6), (2, 0, 3, 6), (2, 1, 0, 12),
             (2, 0, -3, 6), (2, 1, 1, 12), (2, 1, -1, 12), (1, 1, 4, 12),
             (2, 1, 2, 12), (0, 0, 5, 2), (2, 1, -2, 12), (3, 0, 0, 6),
             (1, 0, -5, 6), (3, 0, 1, 6), (3, 0, -1, 6), (1, 0, 5, 6),
             (2, 0, 4, 6), (2, 0, -4, 6), (2, 1, 3, 12), (2, 1, -3, 12),
             (3, 0, -2, 6), (3, 0, 2, 6), (1, 1, 5, 12), (3, 0, -3, 6),
             (0, 0, 6, 2), (2, 2, 0, 6), (3, 0, 3, 6), (2, 1, 4, 12), (2, 2, 1,
                                                                       12),
             (2, 0, 5, 6), (2, 1, -4, 12), (2, 0, -5, 6), (1, 0, -6, 6), (1, 0,
                                                                          6, 6),
             (3, 1, 0, 12), (3, 1, -1, 12), (3, 1, 1, 12), (2, 2, 2,
                                                            12), (3, 1, 2, 12),
             (3, 0, 4, 6), (3, 1, -2, 12), (3, 0, -4, 6), (1, 1, 6,
                                                           12), (2, 2, 3, 12))
        ],
        'P 3 1 m': [
            (4., 4., 6., 90., 90., 120.),
            ((0, 0, 1, 2), (1, 0, 0, 6), (0, 0, 2, 2), (1, 0, 1, 12),
             (1, 0, 2, 12), (1, 1, 0, 6), (0, 0, 3, 2), (1, 1, -1, 6),
             (1, 1, 1, 6), (1, 0, 3, 12), (2, 0, 0, 6), (2, 0, 1, 12),
             (1, 1, 2, 6), (1, 1, -2, 6), (2, 0, 2, 12), (0, 0, 4, 2),
             (1, 1, -3, 6), (1, 1, 3, 6), (1, 0, 4, 12), (2, 1, 0, 12),
             (2, 0, 3, 12), (2, 1, 1, 12), (2, 1, -1, 12), (1, 1, -4, 6),
             (1, 1, 4, 6), (0, 0, 5, 2), (2, 1, -2, 12), (2, 1, 2, 12),
             (3, 0, 0, 6), (1, 0, 5, 12), (2, 0, 4, 12), (3, 0, 1, 12),
             (2, 1, -3, 12), (2, 1, 3, 12), (3, 0, 2, 12), (1, 1, 5, 6),
             (1, 1, -5, 6), (3, 0, 3, 12), (0, 0, 6, 2), (2, 2, 0, 6),
             (2, 1, -4, 12), (2, 0, 5, 12), (2, 2, -1, 6), (2, 2, 1, 6),
             (2, 1, 4, 12), (3, 1, 0, 12), (1, 0, 6, 12), (2, 2, 2, 6),
             (3, 1, -1, 12), (2, 2, -2, 6), (3, 1, 1, 12), (3, 1, -2,
                                                            12), (3, 0, 4, 12),
             (3, 1, 2, 12), (1, 1, -6, 6), (2, 2, 3, 6), (2, 2, -3, 6), (1, 1,
                                                                         6, 6))
        ],
    }
    global FLnhTestData
    FLnhTestData = [{
        'C(4,0,0)': (0.965, 0.42760447),
        'C(2,0,0)': (1.0122, -0.80233610),
        'C(2,0,2)': (0.0061, 8.37491546E-03),
        'C(6,0,4)': (-0.0898, 4.37985696E-02),
        'C(6,0,6)': (-0.1369, -9.04081762E-02),
        'C(6,0,0)': (0.5935, -0.18234928),
        'C(4,0,4)': (0.1872, 0.16358127),
        'C(6,0,2)': (0.6193, 0.27573633),
        'C(4,0,2)': (-0.1897, 0.12530720)
    }, [1, 0, 0]] 
[docs]def test0():
    if NeedTestData:
        TestData()
    msg = 'test cell2Gmat, fillgmat, Gmat2cell'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        G, g = cell2Gmat(cell)
        assert np.allclose(G, tG), msg
        assert np.allclose(g, tg), msg
        tcell = Gmat2cell(g)
        assert np.allclose(cell, tcell), msg
        tcell = Gmat2cell(G)
        assert np.allclose(tcell, trcell), msg 
if __name__ == '__main__':
    selftestlist.append(test0)
[docs]def test1():
    'test cell2A and A2Gmat'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test cell2A and A2Gmat'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        G, g = A2Gmat(cell2A(cell))
        assert np.allclose(G, tG), msg
        assert np.allclose(g, tg), msg 
if __name__ == '__main__':
    selftestlist.append(test1)
[docs]def test2():
    'test Gmat2A, A2cell, A2Gmat, Gmat2cell'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test Gmat2A, A2cell, A2Gmat, Gmat2cell'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        G, g = cell2Gmat(cell)
        tcell = A2cell(Gmat2A(G))
        assert np.allclose(cell, tcell), msg 
if __name__ == '__main__':
    selftestlist.append(test2)
[docs]def test3():
    'test invcell2Gmat'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test invcell2Gmat'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        G, g = invcell2Gmat(trcell)
        assert np.allclose(G, tG), msg
        assert np.allclose(g, tg), msg 
if __name__ == '__main__':
    selftestlist.append(test3)
[docs]def test4():
    'test calc_rVsq, calc_rV, calc_V'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test calc_rVsq, calc_rV, calc_V'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        assert np.allclose(calc_rV(cell2A(cell)), trV), msg
        assert np.allclose(calc_V(cell2A(cell)), tV), msg 
if __name__ == '__main__':
    selftestlist.append(test4)
[docs]def test5():
    'test A2invcell'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test A2invcell'
    for (cell, tg, tG, trcell, tV, trV) in CellTestData:
        rcell = A2invcell(cell2A(cell))
        assert np.allclose(rcell, trcell), msg 
if __name__ == '__main__':
    selftestlist.append(test5)
[docs]def test6():
    'test cell2AB'
    _ReportTest()
    if NeedTestData:
        TestData()
    msg = 'test cell2AB'
    for (cell, coordlist) in CoordTestData:
        A, B = cell2AB(cell)
        for (frac, ortho) in coordlist:
            to = np.inner(A, frac)
            tf = np.inner(B, to)
            assert np.allclose(ortho, to), msg
            assert np.allclose(frac, tf), msg
            to = np.sum(A * frac, axis=1)
            tf = np.sum(B * to, axis=1)
            assert np.allclose(ortho, to), msg
            assert np.allclose(frac, tf), msg 
if __name__ == '__main__':
    selftestlist.append(test6)
[docs]def test7():
    'test GetBraviasNum(...) and GenHBravais(...)'
    _ReportTest()
    import os.path
    import sys
    import GSASIIspc as spc
    testdir = os.path.join(
        os.path.split(os.path.abspath(__file__))[0], 'testinp')
    if os.path.exists(testdir):
        if testdir not in sys.path:
            sys.path.insert(0, testdir)
    import sgtbxlattinp
    derror = 1e-4
    def indexmatch(hklin, hkllist, system):
        for hklref in hkllist:
            hklref = list(hklref)
            # these permutations are far from complete, but are sufficient to
            # allow the test to complete
            if system == 'cubic':
                permlist = [
                    (1, 2, 3),
                    (1, 3, 2),
                    (2, 1, 3),
                    (2, 3, 1),
                    (3, 1, 2),
                    (3, 2, 1),
                ]
            elif system == 'monoclinic':
                permlist = [(1, 2, 3), (-1, 2, -3)]
            else:
                permlist = [(1, 2, 3)]
            for perm in permlist:
                hkl = [abs(i) * hklin[abs(i) - 1] / i for i in perm]
                if hkl == hklref:
                    return True
                if [-i for i in hkl] == hklref:
                    return True
        else:
            return False
    for key in sgtbxlattinp.sgtbx7:
        spdict = spc.SpcGroup(key)
        cell = sgtbxlattinp.sgtbx7[key][0]
        system = spdict[1]['SGSys']
        center = spdict[1]['SGLatt']
        bravcode = GetBraviasNum(center, system)
        g2list = GenHBravais(sgtbxlattinp.dmin, bravcode, cell2A(cell))
        assert len(sgtbxlattinp.sgtbx7[key][1]) == len(
            g2list), 'Reflection lists differ for %s' % key
        for h, k, l, d, num in g2list:
            for hkllist, dref in sgtbxlattinp.sgtbx7[key][1]:
                if abs(d - dref) < derror:
                    if indexmatch((
                            h,
                            k,
                            l,
                    ), hkllist, system):
                        break
            else:
                assert 0, 'No match for %s at %s (%s)' % ((h, k, l), d, key) 
if __name__ == '__main__':
    selftestlist.append(test7)
[docs]def test8():
    'test GenHLaue'
    _ReportTest()
    import GSASIIspc as spc
    import sgtbxlattinp
    derror = 1e-4
    dmin = sgtbxlattinp.dmin
    def indexmatch(hklin, hklref, system, axis):
        # these permutations are far from complete, but are sufficient to
        # allow the test to complete
        if system == 'cubic':
            permlist = [
                (1, 2, 3),
                (1, 3, 2),
                (2, 1, 3),
                (2, 3, 1),
                (3, 1, 2),
                (3, 2, 1),
            ]
        elif system == 'monoclinic' and axis == 'b':
            permlist = [(1, 2, 3), (-1, 2, -3)]
        elif system == 'monoclinic' and axis == 'a':
            permlist = [(1, 2, 3), (1, -2, -3)]
        elif system == 'monoclinic' and axis == 'c':
            permlist = [(1, 2, 3), (-1, -2, 3)]
        elif system == 'trigonal':
            permlist = [(1, 2, 3), (2, 1, 3), (-1, -2, 3), (-2, -1, 3)]
        elif system == 'rhombohedral':
            permlist = [(1, 2, 3), (2, 3, 1), (3, 1, 2)]
        else:
            permlist = [(1, 2, 3)]
        hklref = list(hklref)
        for perm in permlist:
            hkl = [abs(i) * hklin[abs(i) - 1] / i for i in perm]
            if hkl == hklref:
                return True
            if [-i for i in hkl] == hklref:
                return True
        return False
    for key in sgtbxlattinp.sgtbx8:
        spdict = spc.SpcGroup(key)[1]
        cell = sgtbxlattinp.sgtbx8[key][0]
        Axis = spdict['SGUniq']
        system = spdict['SGSys']
        g2list = GenHLaue(dmin, spdict, cell2A(cell))
        #if len(g2list) != len(sgtbxlattinp.sgtbx8[key][1]):
        #    print 'failed',key,':' ,len(g2list),'vs',len(sgtbxlattinp.sgtbx8[key][1])
        #    print 'GSAS-II:'
        #    for h,k,l,d in g2list: print '  ',(h,k,l),d
        #    print 'SGTBX:'
        #    for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print '  ',hkllist,dref
        assert len(g2list) == len(
            sgtbxlattinp.sgtbx8[key][1]), ('Reflection lists differ for %s' %
                                           key)
        #match = True
        for h, k, l, d in g2list:
            for hkllist, dref in sgtbxlattinp.sgtbx8[key][1]:
                if abs(d - dref) < derror:
                    if indexmatch((
                            h,
                            k,
                            l,
                    ), hkllist, system, Axis):
                        break
            else:
                assert 0, 'No match for %s at %s (%s)' % ((h, k, l), d, key) 
                #match = False
        #if not match:
        #for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print '  ',hkllist,dref
        #print center, Laue, Axis, system
if __name__ == '__main__':
    selftestlist.append(test8)
[docs]def test9():
    'test GenHLaue'
    _ReportTest()
    import GSASIIspc as G2spc
    if NeedTestData:
        TestData()
    for spc in LaueTestData:
        data = LaueTestData[spc]
        cell = data[0]
        hklm = np.array(data[1])
        H = hklm[-1][:3]
        hklO = hklm.T[:3].T
        A = cell2A(cell)
        dmin = 1. / np.sqrt(calc_rDsq(H, A))
        SGData = G2spc.SpcGroup(spc)[1]
        hkls = np.array(GenHLaue(dmin, SGData, A))
        hklN = hkls.T[:3].T
        #print spc,hklO.shape,hklN.shape
        err = True
        for H in hklO:
            if H not in hklN:
                print('%d %s' % (H, ' missing from hkl from GSASII'))
                err = False
        assert (err) 
if __name__ == '__main__':
    selftestlist.append(test9)
if __name__ == '__main__':
    # run self-tests
    selftestquiet = False
    for test in selftestlist:
        test()
    print("OK")